IEEE Trans Cybern. 2013 Dec;43(6):1719-33. doi: 10.1109/TSMCB.2012.2228639.
In this paper, we propose a generalized Laplacian of Gaussian (LoG) (gLoG) filter for detecting general elliptical blob structures in images. The gLoG filter can not only accurately locate the blob centers but also estimate the scales, shapes, and orientations of the detected blobs. These functions can be realized by generalizing the common 3-D LoG scale-space blob detector to a 5-D gLoG scale-space one, where the five parameters are image-domain coordinates (x, y), scales (σ(x), σ(y)), and orientation (θ), respectively. Instead of searching the local extrema of the image's 5-D gLoG scale space for locating blobs, a more feasible solution is given by locating the local maxima of an intermediate map, which is obtained by aggregating the log-scale-normalized convolution responses of each individual gLoG filter. The proposed gLoG-based blob detector is applied to both biomedical images and natural ones such as general road-scene images. For the biomedical applications on pathological and fluorescent microscopic images, the gLoG blob detector can accurately detect the centers and estimate the sizes and orientations of cell nuclei. These centers are utilized as markers for a watershed-based touching-cell splitting method to split touching nuclei and counting cells in segmentation-free images. For the application on road images, the proposed detector can produce promising estimation of texture orientations, achieving an accurate texture-based road vanishing point detection method. The implementation of our method is quite straightforward due to a very small number of tunable parameters.
在本文中,我们提出了一种广义的拉普拉斯高斯(LoG)(gLoG)滤波器,用于检测图像中的一般椭圆斑点结构。gLoG 滤波器不仅可以准确地定位斑点中心,还可以估计检测到的斑点的尺度、形状和方向。这些功能可以通过将常见的 3D LoG 尺度空间斑点检测器推广到 5D gLoG 尺度空间来实现,其中五个参数分别是图像域坐标(x,y)、尺度(σ(x),σ(y))和方向(θ)。为了定位斑点,我们提出了一种更可行的解决方案,即通过定位中间图的局部极大值来代替在图像的 5D gLoG 尺度空间中搜索局部极值,该中间图是通过聚合每个 gLoG 滤波器的对数尺度归一化卷积响应得到的。所提出的基于 gLoG 的斑点检测器应用于生物医学图像和自然图像,如一般道路场景图像。对于生物医学应用,如病理和荧光显微镜图像,gLoG 斑点检测器可以准确地检测到细胞核的中心并估计其大小和方向。这些中心被用作基于分水岭的粘连细胞分割方法的标记,以在无分割的图像中分割粘连细胞核并计数细胞。对于道路图像的应用,所提出的检测器可以产生有希望的纹理方向估计,实现基于纹理的道路消失点检测方法。由于可调参数的数量非常少,我们的方法的实现非常简单。