Biodesign Center for Biosensors and Bioelectronics, Arizona State University, Tempe, AZ 85287, USA.
School of Electrical and Computer Engineering, Tempe, AZ 85287, USA.
Biosensors (Basel). 2024 Feb 5;14(2):89. doi: 10.3390/bios14020089.
Bacterial infections, increasingly resistant to common antibiotics, pose a global health challenge. Traditional diagnostics often depend on slow cell culturing, leading to empirical treatments that accelerate antibiotic resistance. We present a novel large-volume microscopy (LVM) system for rapid, point-of-care bacterial detection. This system, using low magnification (1-2×), visualizes sufficient sample volumes, eliminating the need for culture-based enrichment. Employing deep neural networks, our model demonstrates superior accuracy in detecting uropathogenic compared to traditional machine learning methods. Future endeavors will focus on enriching our datasets with mixed samples and a broader spectrum of uropathogens, aiming to extend the applicability of our model to clinical samples.
细菌感染对常见抗生素的耐药性日益增强,这对全球健康构成了挑战。传统的诊断方法通常依赖于缓慢的细胞培养,导致经验性治疗加速了抗生素耐药性的产生。我们提出了一种新颖的大容量显微镜(LVM)系统,用于快速的即时细菌检测。该系统使用低倍放大(1-2×),可以观察到足够的样本量,从而无需进行基于培养的富集。通过使用深度神经网络,我们的模型在检测尿路致病性细菌方面的准确性明显优于传统的机器学习方法。未来的研究将集中在使用混合样本和更广泛的尿路病原体来丰富我们的数据集,旨在将我们的模型的适用性扩展到临床样本。