Suppr超能文献

基于深度学习的大容量显微镜尿液无文化细菌检测。

Deep Learning-Based Culture-Free Bacteria Detection in Urine Using Large-Volume Microscopy.

机构信息

Biodesign Center for Biosensors and Bioelectronics, Arizona State University, Tempe, AZ 85287, USA.

School of Electrical and Computer Engineering, Tempe, AZ 85287, USA.

出版信息

Biosensors (Basel). 2024 Feb 5;14(2):89. doi: 10.3390/bios14020089.

Abstract

Bacterial infections, increasingly resistant to common antibiotics, pose a global health challenge. Traditional diagnostics often depend on slow cell culturing, leading to empirical treatments that accelerate antibiotic resistance. We present a novel large-volume microscopy (LVM) system for rapid, point-of-care bacterial detection. This system, using low magnification (1-2×), visualizes sufficient sample volumes, eliminating the need for culture-based enrichment. Employing deep neural networks, our model demonstrates superior accuracy in detecting uropathogenic compared to traditional machine learning methods. Future endeavors will focus on enriching our datasets with mixed samples and a broader spectrum of uropathogens, aiming to extend the applicability of our model to clinical samples.

摘要

细菌感染对常见抗生素的耐药性日益增强,这对全球健康构成了挑战。传统的诊断方法通常依赖于缓慢的细胞培养,导致经验性治疗加速了抗生素耐药性的产生。我们提出了一种新颖的大容量显微镜(LVM)系统,用于快速的即时细菌检测。该系统使用低倍放大(1-2×),可以观察到足够的样本量,从而无需进行基于培养的富集。通过使用深度神经网络,我们的模型在检测尿路致病性细菌方面的准确性明显优于传统的机器学习方法。未来的研究将集中在使用混合样本和更广泛的尿路病原体来丰富我们的数据集,旨在将我们的模型的适用性扩展到临床样本。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7365/10887190/991285a27a7a/biosensors-14-00089-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验