IEEE Trans Cybern. 2013 Dec;43(6):2255-60. doi: 10.1109/TSMCB.2012.2236313.
In this paper, we present a receding horizon solution to the optimal sensor scheduling problem. The optimal sensor scheduling problem can be posed as a partially observed Markov decision problem whose solution is given by an information space (I-space) dynamic programming (DP) problem. We present a simulation-based stochastic optimization technique that, combined with a receding horizon approach, obviates the need to solve the computationally intractable I-space DP problem. The technique is tested on a sensor scheduling problem, in which a sensor must choose among the measurements of N dynamical systems in a manner that maximizes information regarding the aggregate system over an infinite horizon. While simple, such problems nonetheless lead to very high dimensional DP problems to which the receding horizon approach is well suited.
在本文中,我们提出了一种用于最优传感器调度问题的滚动时域解决方案。最优传感器调度问题可以被描述为一个部分观测马尔可夫决策问题,其解由信息空间(I 空间)动态规划(DP)问题给出。我们提出了一种基于仿真的随机优化技术,该技术与滚动时域方法相结合,可以避免求解计算上难以处理的 I 空间 DP 问题。该技术在一个传感器调度问题中进行了测试,在这个问题中,传感器必须在 N 个动力学系统的测量中进行选择,以在无限时域内最大化关于系统总体的信息量。虽然这个问题很简单,但它会导致非常高维的 DP 问题,而滚动时域方法非常适合解决这些问题。