Suppr超能文献

利用数据挖掘估算树木碳储量。

On the use of data mining for estimating carbon storage in the trees.

机构信息

Department of Forest Science, Federal University of Paraná, Rua Simão Brante, 103, sob, 5, Uberaba, Curitiba, Paraná, 81,570-340, Brazil.

出版信息

Carbon Balance Manag. 2013 Jun 10;8(1):6. doi: 10.1186/1750-0680-8-6.

Abstract

Forests contribute to climate change mitigation by storing carbon in tree biomass. The amount of carbon stored in this carbon pool is estimated by using either allometric equations or biomass expansion factors. Both of the methods provide estimate of the carbon stock based on the biometric parameters of a model tree. This study calls attention to the potential advantages of the data mining technique known as instance-based classification, which is not used currently for this purpose. The analysis of the data on the carbon storage in 30 trees of Brazilian pine (Araucaria angustifolia) shows that the instance-based classification provides as relevant estimates as the conventional methods do. The coefficient of correlation between the estimated and measured values of carbon storage in tree biomass does not vary significantly with the choice of the method. The use of some other measures of method performance leads to the same result. In contrast to the convention methods the instance-based classification does not presume any specific form of the function relating carbon storage to the biometric parameters of the tree. Since the best form of such function is difficult to find, the instance-based classification could outperform the conventional methods in some cases, or simply get rid of the questions about the choice of the allometric equations.

摘要

森林通过在树木生物量中储存碳来为减缓气候变化做出贡献。该碳库中储存的碳量是通过使用生物计量学方程或生物量扩展因子来估算的。这两种方法都基于模型树木的生物计量参数来估算碳储量。本研究提请注意一种称为基于实例的分类的数据挖掘技术的潜在优势,目前尚未将该技术用于此目的。对 30 棵巴西松树(Araucaria angustifolia)的碳存储数据分析表明,基于实例的分类与传统方法一样可以提供相关的估计。在树木生物量中碳存储的估计值与实测值之间的相关系数随方法的选择而变化不大。使用其他一些方法性能衡量标准也会得到相同的结果。与传统方法不同,基于实例的分类不假定与树木生物计量参数相关的碳存储函数具有任何特定形式。由于很难找到这种函数的最佳形式,因此在某些情况下,基于实例的分类可能比传统方法表现更好,或者干脆省去对生物计量学方程选择的问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/283c/3693975/bd9c8dad858f/1750-0680-8-6-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验