Vorster Anthony G, Evangelista Paul H, Stovall Atticus E L, Ex Seth
Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO, 80523, USA.
Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, 80523, USA.
Carbon Balance Manag. 2020 May 14;15(1):8. doi: 10.1186/s13021-020-00143-6.
Biomass maps are valuable tools for estimating forest carbon and forest planning. Individual-tree biomass estimates made using allometric equations are the foundation for these maps, yet the potentially-high uncertainty and bias associated with individual-tree estimates is commonly ignored in biomass map error. We developed allometric equations for lodgepole pine (Pinus contorta), ponderosa pine (P. ponderosa), and Douglas-fir (Pseudotsuga menziesii) in northern Colorado. Plot-level biomass estimates were combined with Landsat imagery and geomorphometric and climate layers to map aboveground tree biomass. We compared biomass estimates for individual trees, plots, and at the landscape-scale using our locally-developed allometric equations, nationwide equations applied across the U.S., and the Forest Inventory and Analysis Component Ratio Method (FIA-CRM). Total biomass map uncertainty was calculated by propagating errors from allometric equations and remote sensing model predictions. Two evaluation methods for the allometric equations were compared in the error propagation-errors calculated from the equation fit (equation-derived) and errors from an independent dataset of destructively-sampled trees (n = 285).
Tree-scale error and bias of allometric equations varied dramatically between species, but local equations were generally most accurate. Depending on allometric equation and evaluation method, allometric uncertainty contributed 30-75% of total uncertainty, while remote sensing model prediction uncertainty contributed 25-70%. When using equation-derived allometric error, local equations had the lowest total uncertainty (root mean square error percent of the mean [% RMSE] = 50%). This is likely due to low-sample size (10-20 trees sampled per species) allometric equations and evaluation not representing true variability in tree growth forms. When independently evaluated, allometric uncertainty outsized remote sensing model prediction uncertainty. Biomass across the 1.56 million ha study area and uncertainties were similar for local (2.1 billion Mg; % RMSE = 97%) and nationwide (2.2 billion Mg; % RMSE = 94%) equations, while FIA-CRM estimates were lower and more uncertain (1.5 billion Mg; % RMSE = 165%).
Allometric equations should be selected carefully since they drive substantial differences in bias and uncertainty. Biomass quantification efforts should consider contributions of allometric uncertainty to total uncertainty, at a minimum, and independently evaluate allometric equations when suitable data are available.
生物量地图是估算森林碳储量和进行森林规划的重要工具。利用异速生长方程进行单株树木生物量估算是这些地图的基础,但单株树木估算中潜在的高不确定性和偏差在生物量地图误差中通常被忽视。我们针对科罗拉多州北部的黑松(Pinus contorta)、黄松(P. ponderosa)和花旗松(Pseudotsuga menziesii)开发了异速生长方程。将样地水平的生物量估算与陆地卫星图像以及地形测量和气候图层相结合,以绘制地上树木生物量地图。我们使用本地开发的异速生长方程、应用于全美的全国性方程以及森林资源清查与分析分量比方法(FIA-CRM),对单株树木、样地以及景观尺度的生物量估算进行了比较。通过传播异速生长方程和遥感模型预测中的误差,计算了生物量地图的总不确定性。在误差传播中比较了异速生长方程的两种评估方法——根据方程拟合计算的误差(方程推导误差)和来自破坏性采样树木独立数据集(n = 285)的误差。
异速生长方程的树木尺度误差和偏差在不同树种之间差异显著,但本地方程通常最为准确。根据异速生长方程和评估方法的不同,异速生长不确定性占总不确定性的30 - 75%,而遥感模型预测不确定性占25 - 70%。当使用方程推导的异速生长误差时,本地方程的总不确定性最低(均方根误差占均值的百分比[% RMSE] = 50%)。这可能是由于样本量较小(每个树种采样10 - 20棵树)的异速生长方程以及评估未体现树木生长形式的真实变异性。在独立评估时,异速生长不确定性超过了遥感模型预测不确定性。对于本地方程(21亿Mg;% RMSE = 97%)和全国性方程(22亿Mg;% RMSE = 94%),156万公顷研究区域的生物量及不确定性相似,而FIA-CRM估算值较低且不确定性更大(15亿Mg;% RMSE = 165%)。
应谨慎选择异速生长方程,因为它们会导致偏差和不确定性的显著差异。生物量量化工作应至少考虑异速生长不确定性对总不确定性的贡献,并在有合适数据时独立评估异速生长方程。