Sobek Jens, Aquino Catharine, Weigel Wilfried, Schlapbach Ralph
Functional Genomics Center Zurich, ETH Zurich/ University of Zurich, Winterthurerstrasse 190, Zurich, CH-8057, Switzerland.
BMC Biophys. 2013 Jun 12;6:8. doi: 10.1186/2046-1682-6-8.
Drop drying is a key factor in a wide range of technical applications, including spotted microarrays. The applied nL liquid volume provides specific reaction conditions for the immobilization of probe molecules to a chemically modified surface.
We investigated the influence of nL and μL liquid drop volumes on the process of probe immobilization and compare the results obtained to the situation in liquid solution. In our data, we observe a strong relationship between drop drying effects on immobilization and surface chemistry. In this work, we present results on the immobilization of dye labeled 20mer oligonucleotides with and without an activating 5'-aminoheptyl linker onto a 2D epoxysilane and a 3D NHS activated hydrogel surface.
Our experiments identified two basic processes determining immobilization. First, the rate of drop drying that depends on the drop volume and the ambient relative humidity. Oligonucleotides in a dried spot react unspecifically with the surface and long reaction times are needed. 3D hydrogel surfaces allow for immobilization in a liquid environment under diffusive conditions. Here, oligonucleotide immobilization is much faster and a specific reaction with the reactive linker group is observed. Second, the effect of increasing probe concentration as a result of drop drying. On a 3D hydrogel, the increasing concentration of probe molecules in nL spotting volumes accelerates immobilization dramatically. In case of μL volumes, immobilization depends on whether the drop is allowed to dry completely. At non-drying conditions, very limited immobilization is observed due to the low oligonucleotide concentration used in microarray spotting solutions. The results of our study provide a general guideline for microarray assay development. They allow for the initial definition and further optimization of reaction conditions for the immobilization of oligonucleotides and other probe molecule classes to different surfaces in dependence of the applied spotting and reaction volume.
液滴干燥是包括点阵微阵列在内的广泛技术应用中的一个关键因素。所施加的纳升液体体积为将探针分子固定到化学修饰表面提供了特定的反应条件。
我们研究了纳升和微升液滴体积对探针固定过程的影响,并将所得结果与液体溶液中的情况进行比较。在我们的数据中,我们观察到液滴干燥对固定的影响与表面化学之间存在密切关系。在这项工作中,我们展示了将带有和不带有活化5'-氨基庚基接头的染料标记20聚体寡核苷酸固定到二维环氧硅烷和三维NHS活化水凝胶表面的结果。
我们的实验确定了决定固定的两个基本过程。首先,液滴干燥速率取决于液滴体积和环境相对湿度。干燥斑点中的寡核苷酸与表面发生非特异性反应,需要较长的反应时间。三维水凝胶表面允许在扩散条件下的液体环境中进行固定。在这里,寡核苷酸固定要快得多,并且观察到与反应性接头基团的特异性反应。其次,液滴干燥导致探针浓度增加的影响。在三维水凝胶上,纳升点样体积中探针分子浓度的增加显著加速了固定。对于微升体积,固定取决于液滴是否完全干燥。在非干燥条件下,由于微阵列点样溶液中使用的寡核苷酸浓度较低,观察到固定非常有限。我们的研究结果为微阵列分析的发展提供了一般指导原则。它们允许根据所应用的点样和反应体积,初步定义并进一步优化将寡核苷酸和其他探针分子类别固定到不同表面的反应条件。