Department of Neuroscience Discovery, Janssen Research & Development, LLC, San Diego, California 92121, USA.
J Biol Chem. 2013 Aug 2;288(31):22707-20. doi: 10.1074/jbc.M113.461392. Epub 2013 Jun 12.
Voltage-gated sodium channels (VGSCs) are essential to the normal function of the vertebrate nervous system. Aberrant function of VGSCs underlies a variety of disorders, including epilepsy, arrhythmia, and pain. A large number of animal toxins target these ion channels and may have significant therapeutic potential. Most of these toxins, however, have not been characterized in detail. Here, by combining patch clamp electrophysiology and radioligand binding studies with peptide mutagenesis, NMR structure determination, and molecular modeling, we have revealed key molecular determinants of the interaction between the tarantula toxin huwentoxin-IV and two VGSC isoforms, Nav1.7 and Nav1.2. Nine huwentoxin-IV residues (F6A, P11A, D14A, L22A, S25A, W30A, K32A, Y33A, and I35A) were important for block of Nav1.7 and Nav1.2. Importantly, molecular dynamics simulations and NMR studies indicated that folding was normal for several key mutants, suggesting that these amino acids probably make specific interactions with sodium channel residues. Additionally, we identified several amino acids (F6A, K18A, R26A, and K27A) that are involved in isoform-specific VGSC interactions. Our structural and functional data were used to model the docking of huwentoxin-IV into the domain II voltage sensor of Nav1.7. The model predicts that a hydrophobic patch composed of Trp-30 and Phe-6, along with the basic Lys-32 residue, docks into a groove formed by the Nav1.7 S1-S2 and S3-S4 loops. These results provide new insight into the structural and molecular basis of sodium channel block by huwentoxin-IV and may provide a basis for the rational design of toxin-based peptides with improved VGSC potency and/or selectivity.
电压门控钠离子通道(VGSCs)对于脊椎动物神经系统的正常功能至关重要。VGSCs 的异常功能是多种疾病的基础,包括癫痫、心律失常和疼痛。大量动物毒素靶向这些离子通道,可能具有显著的治疗潜力。然而,这些毒素中的大多数尚未得到详细描述。在这里,我们通过结合膜片钳电生理学和放射性配体结合研究与肽突变、NMR 结构测定和分子建模,揭示了狼蛛毒素 huwentoxin-IV 与两种 VGSC 亚型 Nav1.7 和 Nav1.2 相互作用的关键分子决定因素。九个 huwentoxin-IV 残基(F6A、P11A、D14A、L22A、S25A、W30A、K32A、Y33A 和 I35A)对 Nav1.7 和 Nav1.2 的阻断很重要。重要的是,分子动力学模拟和 NMR 研究表明,几个关键突变体的折叠正常,这表明这些氨基酸可能与钠离子通道残基发生特异性相互作用。此外,我们还确定了几个参与亚型特异性 VGSC 相互作用的氨基酸(F6A、K18A、R26A 和 K27A)。我们的结构和功能数据用于模拟 huwentoxin-IV 与 Nav1.7 域 II 电压传感器的对接。该模型预测,由 Trp-30 和 Phe-6 组成的疏水区以及碱性 Lys-32 残基,与 Nav1.7 S1-S2 和 S3-S4 环形成的凹槽对接。这些结果为 huwentoxin-IV 阻断钠离子通道的结构和分子基础提供了新的见解,并可能为基于毒素的肽的合理设计提供依据,以提高 VGSC 的效力和/或选择性。