Institute for Advanced Biosciences, Keio University, Fujisawa, Kanagawa 252-0882, Japan.
J Physiol Sci. 2013 Sep;63(5):355-67. doi: 10.1007/s12576-013-0271-x. Epub 2013 Jun 13.
Early embryonic rodent ventricular cells exhibit spontaneous action potential (AP), which disappears in later developmental stages. Here, we used 3 mathematical models-the Kyoto, Ten Tusscher-Panfilov, and Luo-Rudy models-to present an overview of the functional landscape of developmental changes in embryonic ventricular cells. We switched the relative current densities of 9 ionic components in the Kyoto model, and 160 of 512 representative combinations were predicted to result in regular spontaneous APs, in which the quantitative changes in Na(+) current (I Na) and funny current (I f) made large contributions to a wide range of basic cycle lengths. In all three models, the increase in inward rectifier current (I K1) before the disappearance of I f was predicted to result in abnormally high intracellular Ca(2+) concentrations. Thus, we demonstrated that the developmental changes in APs were well represented, as I Na increased before the disappearance of I f, followed by a 10-fold increase in I K1.
早期胚胎啮齿动物心室细胞表现出自发动作电位(AP),这种现象在后期发育阶段消失。在这里,我们使用了 3 个数学模型——京都、Ten Tusscher-Panfilov 和 Luo-Rudy 模型——来概述胚胎心室细胞发育变化的功能全景。我们改变了京都模型中 9 个离子成分的相对电流密度,预测在 512 个代表性组合中有 160 个组合会导致规则的自发 AP,其中钠离子电流(I Na)和有趣电流(I f)的定量变化对广泛的基本周期长度有很大的贡献。在所有三个模型中,预测在 I f 消失之前,内向整流电流(I K1)的增加会导致细胞内 Ca(2+)浓度异常升高。因此,我们证明了 AP 的发育变化得到了很好的体现,即 I Na 在 I f 消失之前增加,然后 I K1 增加 10 倍。