Suppr超能文献

模拟未患病人心室动作电位:模型制定与实验验证。

Simulation of the undiseased human cardiac ventricular action potential: model formulation and experimental validation.

机构信息

Cardiac Bioelectricity and Arrhythmia Center, Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA.

出版信息

PLoS Comput Biol. 2011 May;7(5):e1002061. doi: 10.1371/journal.pcbi.1002061. Epub 2011 May 26.

Abstract

Cellular electrophysiology experiments, important for understanding cardiac arrhythmia mechanisms, are usually performed with channels expressed in non myocytes, or with non-human myocytes. Differences between cell types and species affect results. Thus, an accurate model for the undiseased human ventricular action potential (AP) which reproduces a broad range of physiological behaviors is needed. Such a model requires extensive experimental data, but essential elements have been unavailable. Here, we develop a human ventricular AP model using new undiseased human ventricular data: Ca(2+) versus voltage dependent inactivation of L-type Ca(2+) current (I(CaL)); kinetics for the transient outward, rapid delayed rectifier (I(Kr)), Na(+)/Ca(2+) exchange (I(NaCa)), and inward rectifier currents; AP recordings at all physiological cycle lengths; and rate dependence and restitution of AP duration (APD) with and without a variety of specific channel blockers. Simulated APs reproduced the experimental AP morphology, APD rate dependence, and restitution. Using undiseased human mRNA and protein data, models for different transmural cell types were developed. Experiments for rate dependence of Ca(2+) (including peak and decay) and intracellular sodium (Na(+)) in undiseased human myocytes were quantitatively reproduced by the model. Early afterdepolarizations were induced by I(Kr) block during slow pacing, and AP and Ca(2+) alternans appeared at rates >200 bpm, as observed in the nonfailing human ventricle. Ca(2+)/calmodulin-dependent protein kinase II (CaMK) modulated rate dependence of Ca(2+) cycling. I(NaCa) linked Ca(2+) alternation to AP alternans. CaMK suppression or SERCA upregulation eliminated alternans. Steady state APD rate dependence was caused primarily by changes in Na(+), via its modulation of the electrogenic Na(+)/K(+) ATPase current. At fast pacing rates, late Na(+) current and I(CaL) were also contributors. APD shortening during restitution was primarily dependent on reduced late Na(+) and I(CaL) currents due to inactivation at short diastolic intervals, with additional contribution from elevated I(Kr) due to incomplete deactivation.

摘要

细胞电生理学实验对于理解心律失常机制非常重要,通常使用在非心肌细胞中表达的通道或非人类心肌细胞进行。细胞类型和物种的差异会影响实验结果。因此,需要一种能够准确模拟未患病人类心室动作电位(AP)并重现广泛生理行为的模型。这种模型需要广泛的实验数据,但关键元素尚不可用。在这里,我们使用新的未患病人类心室数据开发了一种人类心室 AP 模型:L 型钙电流(I(CaL))的电压依赖性失活;瞬态外向、快速延迟整流电流(I(Kr))、Na(+)/Ca(2+)交换电流(I(NaCa))和内向整流电流的动力学;所有生理心动周期长度的 AP 记录;以及具有和不具有各种特定通道阻滞剂的 AP 时程(APD)的速率依赖性和恢复性。模拟的 AP 再现了实验 AP 形态、APD 速率依赖性和恢复性。使用未患病人类 mRNA 和蛋白质数据,开发了不同穿壁细胞类型的模型。该模型定量再现了未患病人类心肌细胞中钙(包括峰值和衰减)和细胞内钠([Na(+)](i))的速率依赖性实验。在缓慢起搏期间 I(Kr)阻断会引发早期后除极,并且在速率大于 200 bpm 时,如在非衰竭人类心室中观察到的那样,AP 和钙交替出现。钙/钙调蛋白依赖性蛋白激酶 II(CaMK)调节钙循环的速率依赖性。I(NaCa)将钙交替与 AP 交替联系起来。CaMK 抑制或 SERCA 上调消除了交替。稳态 APD 速率依赖性主要由[Na(+)](i)的变化引起,通过其对电致性 Na(+)/K(+)ATP 酶电流的调制。在快速起搏速率下,晚期钠电流和 I(CaL)也是贡献者。复极化期间的 APD 缩短主要取决于在短舒张间隔期间失活导致的晚期钠和 I(CaL)电流减少,由于不完全去激活导致 I(Kr)升高的额外贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6de/3102752/7346665dcd47/pcbi.1002061.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验