Institute of Polymers/Department of Chemistry, Nanchang University, Nanchang 330031, China.
ACS Appl Mater Interfaces. 2013 Jul 10;5(13):5986-93. doi: 10.1021/am401863r. Epub 2013 Jun 25.
An facile approach for improving device efficiency of poly(3-hexylthiophene) (P3HT)/[6,6]-phenyl C61 butyric acid methyl ester (PC61BM) bulk heterojunction solar cells is presented. This method is used by simply precasting a tiny thin P3HT layer with high crystallinity between PEDOT:PSS and photoactive P3HT:PC61BM layers. The high crystalline thin P3HT layers are casted from three different solvents such as dichloromethane (DCM), dichlorobenzene (o-DCB), and tetrahydrofuran (THF). It is demonstrated that THF used for thin P3HT layer preparation is a suitable solvent for yielding a high crystalline film, which is unreadily washed away during the solution processing of the active layer. The results indicate that the morphology of P3HT:PC61BM active layers strongly depend on the formation of P3HT buffer layer. A great morphology difference of P3HT:PC61BM is caused from crystallinity of P3HT buffer layers prepared by different solvents. The thin P3HT layer with high crystallinity can improve the crystalline degree of P3HT in the active layer, subsequently inducing the whole active layer to form a well self-assembled pathway for efficient charge transfer and transportation to their respective electrodes. Therefore, a dramatically enhanced short-circuit current density of the device is resulted. After optimization of thickness of the P3HT buffer layer, an improvement of the power conversion efficiency is obtained from 2.98% to 5.14%.
一种提高聚(3-己基噻吩)(P3HT)/[6,6]-苯基-C61 丁酸甲酯(PC61BM)体异质结太阳能电池器件效率的简便方法。该方法通过在PEDOT:PSS 和光活性 P3HT:PC61BM 层之间预先形成具有高结晶度的微小 P3HT 薄层来实现。高结晶度的 P3HT 层是由三种不同的溶剂(二氯甲烷(DCM)、邻二氯苯(o-DCB)和四氢呋喃(THF))铸膜而成。结果表明,THF 是制备高结晶薄膜的合适溶剂,在活性层的溶液处理过程中不易被洗掉。结果表明,P3HT:PC61BM 活性层的形态强烈依赖于 P3HT 缓冲层的形成。不同溶剂制备的 P3HT 缓冲层的结晶度导致 P3HT:PC61BM 的形态差异很大。具有高结晶度的 P3HT 薄层可以提高活性层中 P3HT 的结晶度,进而使整个活性层形成良好的自组装路径,以有效地进行电荷转移和传输到各自的电极。因此,器件的短路电流密度得到显著提高。优化 P3HT 缓冲层的厚度后,功率转换效率从 2.98%提高到 5.14%。