Division of Urologic Surgery, Duke University Medical Center, Durham, North Carolina; Department of Urology, Universitätsmedizin Mainz, Mainz, Germany.
J Urol. 2013 Dec;190(6):2117-23. doi: 10.1016/j.juro.2013.06.013. Epub 2013 Jun 11.
Computerized tomography use increased exponentially in the last 3 decades, and it is commonly used to evaluate many urological conditions. Ionizing radiation exposure from medical imaging is linked to the risk of malignancy. We measured the organ and calculated effective doses of different studies to determine whether the dose-length product method is an accurate estimation of radiation exposure.
An anthropomorphic male phantom validated for human organ dosimetry measurements was used to determine radiation doses. High sensitivity metal oxide semiconductor field effect transistor dosimeters were placed at 20 organ locations to measure specific organ doses. For each study the phantom was scanned 3 times using our institutional protocols. Organ doses were measured and effective doses were calculated on dosimetry. Effective doses measured by a metal oxide semiconductor field effect transistor dosimeter were compared to calculated effective doses derived from the dose-length product.
The mean±SD effective dose on dosimetry for stone protocol, chest and abdominopelvic computerized tomography, computerized tomography urogram and renal cell carcinoma protocol computerized tomography was 3.04±0.34, 4.34±0.27, 5.19±0.64, 9.73±0.71 and 11.42±0.24 mSv, respectively. The calculated effective dose for these studies Was 3.33, 2.92, 5.84, 9.64 and 10.06 mSv, respectively (p=0.8478).
The effective dose varies considerable for different urological computerized tomography studies. Renal stone protocol computerized tomography shows the lowest dose, and computerized tomography urogram and the renal cell carcinoma protocol accumulate the highest effective doses. The calculated effective dose derived from the dose-length product is a reasonable estimate of patient radiation exposure.
在过去的 30 年中,计算机断层扫描的使用呈指数级增长,常用于评估许多泌尿科疾病。来自医学影像的电离辐射暴露与恶性肿瘤的风险相关。我们测量了不同研究的器官和计算有效剂量,以确定剂量长度乘积法是否是辐射暴露的准确估计。
使用经过人体器官剂量测量验证的人体模拟男性模型来确定辐射剂量。将高灵敏度金属氧化物半导体场效应晶体管剂量计放置在 20 个器官位置,以测量特定器官的剂量。对于每项研究,我们使用机构协议对模型进行了 3 次扫描。在剂量学上测量器官剂量并计算有效剂量。使用金属氧化物半导体场效应晶体管剂量计测量的有效剂量与从剂量长度乘积得出的计算有效剂量进行比较。
在剂量学上,结石方案、胸部和腹部计算机断层扫描、计算机断层尿路造影和肾细胞癌方案计算机断层扫描的平均有效剂量分别为 3.04±0.34、4.34±0.27、5.19±0.64、9.73±0.71 和 11.42±0.24 mSv。这些研究的计算有效剂量分别为 3.33、2.92、5.84、9.64 和 10.06 mSv(p=0.8478)。
不同的泌尿科计算机断层扫描研究的有效剂量差异很大。肾结石方案计算机断层扫描显示最低剂量,而计算机断层尿路造影和肾细胞癌方案则积累了最高的有效剂量。从剂量长度乘积得出的计算有效剂量是患者辐射暴露的合理估计。