Department of Molecular Biology & Biotechnology, The University of Sheffield, Sheffield S10 2TN, UK.
Nitric Oxide. 2013 Nov 1;34:65-75. doi: 10.1016/j.niox.2013.06.002. Epub 2013 Jun 11.
During infection and pathogenesis, Campylobacter, the leading cause of gastroenteritis, encounters NO and reactive nitrogen species (RNS) derived from the host. To combat these species, Campylobacter jejuni expresses two haemoglobins: the single domain haemoglobin (Cgb) detoxifies NO but the role of the truncated globin (Ctb) is unclear. Confirmation of Cgb activity and more extensive exploration of Ctb function(s) in vivo are restricted due to difficulties in expressing proteins in Campylobacter and our lack of understanding of how the globin haems are re-reduced after ligand reactions.
The cgb and ctb genes were cloned under the control of arabinose-inducible promoters and the globins expressed in an Escherichia coli mutant lacking the main NO detoxification mechanisms (Hmp and the Nor system comprising the transcription regulator NorR, the flavorubredoxin and its reductase (NorVW)); cellular responses under oxidative and nitrosative stress conditions were assessed. Spectroscopic changes of the Cgb and Ctb haems in soluble fractions after oxidation by NO were evaluated. Construction of E. coli nor mutants and a ubiquinone-defective strain allowed the exploration of the flavorubredoxin reductase and the aerobic respiratory chain as candidates for Cgb electron donors in E. coli mutants.
Cgb, but not Ctb, complements the NO- and RNS-sensitive phenotype of an E. coli hmp mutant in aerobic conditions; however, Cgb fails to protect an hmp norR mutant in the absence of oxygen. Reduction of Cgb and Ctb in E. coli and C. jejuni soluble extracts and turnover after NO oxidation is demonstrated. Finally, we report a minor role for NorW as a Cgb reductase partner in E. coli but no role for respiratory electron flux in globin redox cycling.
The NO detoxification capacity of Cgb is confirmed by heterologous expression in E. coli. The reducibility of Cgb and Ctb in E. coli and C. jejuni extracts and the lack of dependence of reduction upon flavorubredoxin reductase and the respiratory chain in E. coli argue in favor of a non-specific reductase system.
We present the most persuasive evidence to date that Cgb, but not Ctb, confers tolerance to NO and RNS by reaction with NO. Since certain hypotheses for the mechanism of haem re-reduction in E. coli following the reaction with NO are not proven, the mechanisms of reduction in C. jejuni now require challenging experimental evaluation.
在感染和发病过程中,弯曲菌是导致肠胃炎的主要原因,它会遇到来自宿主的一氧化氮和活性氮物种(RNS)。为了对抗这些物质,空肠弯曲菌表达两种血红蛋白:单域血红蛋白(Cgb)可以解毒一氧化氮,但截断球蛋白(Ctb)的作用尚不清楚。由于在弯曲菌中表达蛋白质的困难以及我们对配体反应后球蛋白血红素如何再还原的理解不足,Cgb 活性的确认以及 Ctb 功能的更广泛探索受到限制。
在阿拉伯糖诱导启动子的控制下克隆 cgb 和 ctb 基因,并在缺乏主要一氧化氮解毒机制(Hmp 和由转录调节剂 NorR、风味黄素及其还原酶(NorVW)组成的 Nor 系统)的大肠杆菌突变体中表达这些球蛋白;评估氧化和硝化应激条件下的细胞反应。评估一氧化氮氧化后可溶性级分中 Cgb 和 Ctb 血红素的光谱变化。构建大肠杆菌 nor 突变体和泛醌缺陷株,以探索风味黄素还原酶和需氧呼吸链作为大肠杆菌突变体中 Cgb 电子供体的候选物。
Cgb 但不是 Ctb,在需氧条件下补充了大肠杆菌 hmp 突变体对一氧化氮和 RNS 的敏感表型;然而,在没有氧气的情况下,Cgb 不能保护 hmp norR 突变体。证明了 Cgb 和 Ctb 在大肠杆菌和空肠弯曲菌可溶性提取物中的还原以及一氧化氮氧化后的周转。最后,我们报告了 NorW 在大肠杆菌中作为 Cgb 还原酶伴侣的次要作用,但在球蛋白氧化还原循环中呼吸电子流没有作用。
通过在大肠杆菌中的异源表达,证实了 Cgb 的一氧化氮解毒能力。Cgb 和 Ctb 在大肠杆菌和空肠弯曲菌提取物中的可还原性以及大肠杆菌中还原对风味黄素还原酶和呼吸链的依赖性缺失,支持了一种非特异性还原酶系统。
我们提出了迄今为止最有说服力的证据,证明 Cgb 而不是 Ctb 通过与一氧化氮反应赋予对一氧化氮和 RNS 的耐受性。由于某些关于大肠杆菌中与一氧化氮反应后血红素再还原机制的假设尚未得到证明,因此空肠弯曲菌的还原机制现在需要进行具有挑战性的实验评估。