Suppr超能文献

通过病理数据挖掘预测中国患者乙型肝炎病毒表面抗原的存在。

Predicting the presence of hepatitis B virus surface antigen in Chinese patients by pathology data mining.

机构信息

University of Canberra, Australia.

出版信息

J Med Virol. 2013 Aug;85(8):1334-9. doi: 10.1002/jmv.23609.

Abstract

Hepatitis B virus (HBV) is a pathogen of worldwide health significance, associated with liver disease. A vaccine is available, yet HBV prevalence remains a concern, particularly in developing countries. Pathology laboratories have a primary role in the diagnosis and monitoring of HBV infection, through hepatitis B surface antigen (HBsAg) immunoassay and associated tests. Analysis of HBsAg immunoassay and associated pathology data from 821 Chinese patients applied 10-fold cross-validation to establish classification decision trees (CDTs), with CDT results used subsequently to develop a logistic regression model. The robustness of logistic regression model was confirmed by the Hosmer-Lemeshow test, Pseudo-R(2) and an area under receiver operating characteristic curve (AUROC) result that showed the logistic regression model was capable of accurately discriminating the HBsAg positive from HBsAg negative patients at 95% accuracy. Overall CDT sensitivity and specificity was 94.7% (± 5.0%) and 89.5% (± 5.7%), respectively, close to the sensitivity and specificity of the immunoassay, providing an alternative to predict HBsAg status. Both the CDT and logistic regression modeling demonstrated the importance of the routine pathology variables alanine aminotransferase (ALT), serum albumin (ALB), and alkaline phosphatase (ALP) to accurately predict HBsAg status in a Chinese patient cohort. The study demonstrates that CDTs and a linked logistic regression model applied to routine pathology data were an effective supplement to HBsAg immunoassay, and a possible replacement method where immunoassays are not requested or not easily available for the laboratory diagnosis of HBV infection.

摘要

乙型肝炎病毒(HBV)是一种具有全球健康意义的病原体,与肝病有关。目前已有疫苗可用,但 HBV 的流行仍然令人担忧,尤其是在发展中国家。病理学实验室在乙型肝炎表面抗原(HBsAg)免疫测定及相关检测的乙型肝炎病毒感染的诊断和监测中发挥着主要作用。对 821 例中国患者的 HBsAg 免疫测定和相关病理学数据进行了 10 倍交叉验证,建立了分类决策树(CDT),随后利用 CDT 结果开发了逻辑回归模型。逻辑回归模型的稳健性通过 Hosmer-Lemeshow 检验、伪 R(2)和接受者操作特征曲线(AUROC)下面积(AUROC)结果得到了确认,该结果表明,逻辑回归模型能够以 95%的准确率准确地区分 HBsAg 阳性和 HBsAg 阴性患者。总体 CDT 的敏感性和特异性分别为 94.7%(±5.0%)和 89.5%(±5.7%),接近免疫测定的敏感性和特异性,为预测 HBsAg 状态提供了另一种选择。CDT 和逻辑回归模型都表明,丙氨酸氨基转移酶(ALT)、血清白蛋白(ALB)和碱性磷酸酶(ALP)等常规病理学变量对准确预测中国患者群体中的 HBsAg 状态非常重要。该研究表明,CDT 和相关联的逻辑回归模型应用于常规病理学数据是 HBsAg 免疫测定的有效补充,也是在实验室诊断乙型肝炎病毒感染时无法或不易获得免疫测定的情况下的一种可能替代方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验