Suppr超能文献

从全国临床数据库中挖掘疾病风险模式以评估早期类风湿性关节炎风险。

Mining disease risk patterns from nationwide clinical databases for the assessment of early rheumatoid arthritis risk.

作者信息

Chin Chu Yu, Weng Meng Yu, Lin Tzu Chieh, Cheng Shyr Yuan, Yang Yea Huei Kao, Tseng Vincent S

机构信息

Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan; Telecommunication Laboratories, Chunghwa Telecom Co., Ltd., Taiwan.

Department of Internal Medicine, Division of Allergy, Immunology, and Rheumatology, National Cheng Kung University Medical College and Hospital, Tainan, Taiwan.

出版信息

PLoS One. 2015 Apr 13;10(4):e0122508. doi: 10.1371/journal.pone.0122508. eCollection 2015.

Abstract

Rheumatoid arthritis (RA) is a chronic autoimmune rheumatic disease that can cause painful swelling in the joint lining, morning stiffness, and joint deformation/destruction. These symptoms decrease both quality of life and life expectancy. However, if RA can be diagnosed in the early stages, it can be controlled with pharmacotherapy. Although many studies have examined the possibility of early assessment and diagnosis, few have considered the relationship between significant risk factors and the early assessment of RA. In this paper, we present a novel framework for early RA assessment that utilizes data preprocessing, risk pattern mining, validation, and analysis. Under our proposed framework, two risk patterns can be discovered. Type I refers to well-known risk patterns that have been identified by existing studies, whereas Type II denotes unknown relationship risk patterns that have rarely or never been reported in the literature. These Type II patterns are very valuable in supporting novel hypotheses in clinical trials of RA, and constitute the main contribution of this work. To ensure the robustness of our experimental evaluation, we use a nationwide clinical database containing information on 1,314 RA-diagnosed patients over a 12-year follow-up period (1997-2008) and 965,279 non-RA patients. Our proposed framework is employed on this large-scale population-based dataset, and is shown to effectively discover rich RA risk patterns. These patterns may assist physicians in patient assessment, and enhance opportunities for early detection of RA. The proposed framework is broadly applicable to the mining of risk patterns for major disease assessments. This enables the identification of early risk patterns that are significantly associated with a target disease.

摘要

类风湿性关节炎(RA)是一种慢性自身免疫性风湿疾病,可导致关节内膜疼痛肿胀、晨僵以及关节变形/破坏。这些症状会降低生活质量和预期寿命。然而,如果能在早期诊断出RA,就可以通过药物治疗加以控制。尽管许多研究探讨了早期评估和诊断的可能性,但很少有研究考虑重大风险因素与RA早期评估之间的关系。在本文中,我们提出了一种用于RA早期评估的新颖框架,该框架利用数据预处理、风险模式挖掘、验证和分析。在我们提出的框架下,可以发现两种风险模式。I型是指现有研究已确定的知名风险模式,而II型表示文献中很少或从未报道过的未知关系风险模式。这些II型模式在支持RA临床试验中的新假设方面非常有价值,构成了这项工作的主要贡献。为确保我们实验评估的稳健性,我们使用了一个全国性临床数据库,其中包含1997年至2008年12年随访期内1314例确诊为RA的患者以及965279例非RA患者的信息。我们提出的框架应用于这个基于大规模人群的数据集,并被证明能有效发现丰富的RA风险模式。这些模式可能有助于医生进行患者评估,并增加RA早期检测的机会。所提出的框架广泛适用于重大疾病评估的风险模式挖掘。这能够识别与目标疾病显著相关的早期风险模式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df8f/4395408/a56e537413f3/pone.0122508.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验