Suppr超能文献

数据库驱动的决策支持系统:定制死亡率预测。

A Database-driven Decision Support System: Customized Mortality Prediction.

机构信息

Laboratory of Computational Physiology, Harvard-MIT Division of Health Sciences and Technology, 77 Massachusetts Avenue, E25-505, Cambridge, MA 02139, USA.

出版信息

J Pers Med. 2012 Sep 27;2(4):138-48. doi: 10.3390/jpm2040138.

Abstract

We hypothesize that local customized modeling will provide more accurate mortality prediction than the current standard approach using existing scoring systems. Mortality prediction models were developed for two subsets of patients in Multi-parameter Intelligent Monitoring for Intensive Care (MIMIC), a public de-identified ICU database, and for the subset of patients ≥80 years old in a cardiac surgical patient registry. Logistic regression (LR), Bayesian network (BN) and artificial neural network (ANN) were employed. The best-fitted models were tested on the remaining unseen data and compared to either the Simplified Acute Physiology Score (SAPS) for the ICU patients, or the EuroSCORE for the cardiac surgery patients. Local customized mortality prediction models performed better as compared to the corresponding current standard severity scoring system for all three subsets of patients: patients with acute kidney injury (AUC = 0.875 for ANN, vs. SAPS, AUC = 0.642), patients with subarachnoid hemorrhage (AUC = 0.958 for BN, vs. SAPS, AUC = 0.84), and elderly patients undergoing open heart surgery (AUC = 0.94 for ANN, vs. EuroSCORE, AUC = 0.648). Rather than developing models with good external validity by including a heterogeneous patient population, an alternative approach would be to build models for specific patient subsets using one's local database.

摘要

我们假设,与使用现有评分系统的当前标准方法相比,局部定制建模将提供更准确的死亡率预测。在多参数智能监测重症监护(MIMIC)的两个患者子集以及心脏外科患者登记处的≥80 岁患者子集中开发了死亡率预测模型。采用逻辑回归(LR)、贝叶斯网络(BN)和人工神经网络(ANN)。在其余未见过的数据上测试最佳拟合模型,并将其与 ICU 患者的简化急性生理学评分(SAPS)或心脏手术患者的 EuroSCORE 进行比较。对于所有三个患者子集,局部定制的死亡率预测模型的性能均优于相应的当前标准严重程度评分系统:急性肾损伤患者(ANN 的 AUC = 0.875,与 SAPS 的 AUC = 0.642 相比)、蛛网膜下腔出血患者(BN 的 AUC = 0.958,与 SAPS 的 AUC = 0.84 相比)和接受心脏直视手术的老年患者(ANN 的 AUC = 0.94,与 EuroSCORE 的 AUC = 0.648 相比)。与其通过纳入异质患者群体来开发具有良好外部有效性的模型,不如使用本地数据库为特定患者子集构建模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac48/4251375/26d71713ac50/jpm-02-00138-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验