Suppr超能文献

基于长期疾病史和急性生理学数据聚合的重症监护病房患者生存预测:丹麦国家患者登记处和电子患者记录的回顾性研究。

Survival prediction in intensive-care units based on aggregation of long-term disease history and acute physiology: a retrospective study of the Danish National Patient Registry and electronic patient records.

机构信息

Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.

Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Intensive Care, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.

出版信息

Lancet Digit Health. 2019 Jun;1(2):e78-e89. doi: 10.1016/S2589-7500(19)30024-X. Epub 2019 May 23.

Abstract

BACKGROUND

Intensive-care units (ICUs) treat the most critically ill patients, which is complicated by the heterogeneity of the diseases that they encounter. Severity scores based mainly on acute physiology measures collected at ICU admission are used to predict mortality, but are non-specific, and predictions for individual patients can be inaccurate. We investigated whether inclusion of long-term disease history before ICU admission improves mortality predictions.

METHODS

Registry data for long-term disease histories for more than 230 000 Danish ICU patients were used in a neural network to develop an ICU mortality prediction model. Long-term disease histories and acute physiology measures were aggregated to predict mortality risk for patients for whom both registry and ICU electronic patient record data were available. We compared mortality predictions with admission scores on the Simplified Acute Physiology Score (SAPS) II, the Acute Physiologic Assessment and Chronic Health Evaluation (APACHE) II, and the best available multimorbidity score, the Multimorbidity Index. An external validation set from an additional hospital was acquired after model construction to confirm the validity of our model. During initial model development data were split into a training set (85%) and an independent test set (15%), and a five-fold cross-validation was done during training to avoid overfitting. Neural networks were trained for datasets with disease history of 1 month, 3 months, 6 months, 1 year, 2·5 years, 5 years, 7·5 years, 10 years, and 23 years before ICU admission.

FINDINGS

Mortality predictions with a model based solely on disease history outperformed the Multimorbidity Index (Matthews correlation coefficient 0·265 vs 0·065), and performed similarly to SAPS II and APACHE II (Matthews correlation coefficient with disease history, age, and sex 0·326 vs 0·347 and 0·300 for SAPS II and APACHE II, respectively). Diagnoses up to 10 years before ICU admission affected current mortality prediction. Aggregation of previous disease history and acute physiology measures in a neural network yielded the most precise predictions of in-hospital mortality (Matthews correlation coefficient 0·391 for in-hospital mortality compared with 0·347 with SAPS II and 0·300 with APACHE II). These results for the aggregated model were validated in an external independent dataset of 1528 patients (Matthews correlation coefficient for prediction of in-hospital mortality 0·341).

INTERPRETATION

Longitudinal disease-spectrum-wide data available before ICU admission are useful for mortality prediction. Disease history can be used to differentiate mortality risk between patients with similar vital signs with more precision than SAPS II and APACHE II scores. Machine learning models can be deconvoluted to generate novel understandings of how ICU patient features from long-term and short-term events interact with each other. Explainable machine learning models are key in clinical settings, and our results emphasise how to progress towards the transformation of advanced models into actionable, transparent, and trustworthy clinical tools.

FUNDING

Novo Nordisk Foundation and Innovation Fund Denmark.

摘要

背景

重症监护病房(ICU)治疗病情最危急的患者,这使得他们所遇到的疾病异质性变得复杂。主要基于 ICU 入院时采集的急性生理学测量值的严重程度评分用于预测死亡率,但这些评分不具有特异性,对个体患者的预测可能不准确。我们研究了在 ICU 入院前纳入长期疾病史是否可以提高死亡率预测的准确性。

方法

我们使用超过 230000 名丹麦 ICU 患者的长期疾病史登记数据,通过神经网络开发了一个 ICU 死亡率预测模型。长期疾病史和急性生理学测量值被聚合,以预测有登记和 ICU 电子病历数据的患者的死亡风险。我们将死亡率预测结果与入院时的简化急性生理学评分(SAPS)Ⅱ、急性生理学和慢性健康评估(APACHE)Ⅱ评分以及最佳可用的合并症评分(多合并症指数)进行了比较。在模型构建后,我们获得了来自另一家医院的外部验证集,以确认我们模型的有效性。在模型开发过程中,数据首先被分为训练集(85%)和独立测试集(15%),然后在训练过程中进行了五次交叉验证,以避免过拟合。我们对疾病史为 1 个月、3 个月、6 个月、1 年、2.5 年、5 年、7.5 年、10 年和 23 年前 ICU 入院的数据集进行了神经网络训练。

结果

仅基于疾病史的模型进行死亡率预测的效果优于多合并症指数(马修斯相关系数 0.265 比 0.065),且与 SAPS Ⅱ和 APACHE Ⅱ的效果相似(疾病史、年龄和性别纳入模型的马修斯相关系数为 0.326 比 0.347 和 0.300)。在 ICU 入院前 10 年内的诊断结果会影响当前的死亡率预测。在神经网络中聚合之前的疾病史和急性生理学测量值可以更精确地预测住院死亡率(住院死亡率的马修斯相关系数为 0.391,而 SAPS Ⅱ为 0.347,APACHE Ⅱ为 0.300)。该汇总模型的结果在一个包含 1528 名患者的外部独立数据集(住院死亡率预测的马修斯相关系数为 0.341)中得到了验证。

解释

在 ICU 入院前获得的长期疾病谱数据可用于死亡率预测。与 SAPS Ⅱ和 APACHE Ⅱ评分相比,疾病史可用于更精确地区分具有相似生命体征的患者的死亡率风险。机器学习模型可以被分解,以产生 ICU 患者特征如何与短期事件相互作用的新的理解。在临床环境中,可解释的机器学习模型是关键,我们的结果强调了如何将先进的模型转化为可操作的、透明的和值得信赖的临床工具。

资金来源

诺和诺德基金会和丹麦创新基金会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验