Suppr超能文献

从实验室间研究获得的精密度数据的可靠性。

Reliability of precision data obtained from interlaboratory studies.

作者信息

Uhlig Steffen, Eichler Stefanie, Gowik Petra

机构信息

Quo Data GmbH, Kaitzer St 135, D-01187 Dresden, Germany.

出版信息

J AOAC Int. 2013 Mar-Apr;96(2):466-70. doi: 10.5740/jaoacint.11-365.

Abstract

Precision data, such as laboratory-to-laboratory SD (SL) and repeatability SD, obtained from interlaboratory tests are needed to assess analytical test methods. These precision data describing random error are subject to random variation. In order to avoid distorted assessments of test methods, interlaboratory tests must fulfill minimal requirements for achieving, e.g., a desired reliability in S(L). In 2009, McClure and Lee considered reliability of S(L) as a characteristic of an interlaboratory study. They developed an approach to approximate that reliability to make it possible to adapt the study design of an interlaboratory study to a desired reliability in S(L). The McClure and Lee approach introduces the "margin of relative error" to arrive at the magnitude of the uncertainty in S(L). This article discusses their approach and presents a generalized approach. The limitations of McClure and Lee's approximation are shown to result in underestimation of the actual variability of S(L) due to the disregard of the inherent negative bias of S(L). This bias corresponds to the fact that the expected value of the obtained S(L) lies below the true value sigmaL one would obtain in an interlaboratory study with an infinite number of laboratories and replicates. In order to achieve the reported level of reliability in S(L), the actual number of laboratories required is typically approximately 25% higher than that calculated by McClure and Lee. We present a generalized approach using "margins of relative random error," which takes the impact of the bias of the S(L) into account, resulting in a more realistic estimation of the variability of the precision parameter S(L).

摘要

为评估分析测试方法,需要从实验室间测试获得的精确数据,如实验室间标准差(SL)和重复性标准差。这些描述随机误差的精确数据会受到随机变化的影响。为避免对测试方法的评估出现偏差,实验室间测试必须满足最低要求,以实现例如S(L)所需的可靠性。2009年,麦克卢尔和李将S(L)的可靠性视为实验室间研究的一个特征。他们开发了一种方法来近似该可靠性,以便能够使实验室间研究的设计适应S(L)所需的可靠性。麦克卢尔和李的方法引入了“相对误差幅度”来得出S(L)不确定性的大小。本文讨论了他们的方法并提出了一种广义方法。结果表明,麦克卢尔和李近似法的局限性会导致由于忽略S(L)固有的负偏差而低估S(L)的实际变异性。这种偏差对应于这样一个事实,即所获得的S(L)的期望值低于在具有无限数量实验室和重复次数的实验室间研究中所获得的真实值sigmaL。为了达到报告的S(L)可靠性水平,所需的实际实验室数量通常比麦克卢尔和李计算的数量高出约25%。我们提出了一种使用“相对随机误差幅度”的广义方法,该方法考虑了S(L)偏差的影响,从而对精度参数S(L)的变异性进行更实际的估计。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验