McClure Foster D, Lee Jung K
J AOAC Int. 2014 Mar-Apr;97(2):624-9. doi: 10.5740/jaoacint.12-457.
Two methods of prediction of random variables, best predictor (BP) and best linear unbiased predictor (BLUP), are discussed as potential statistical methods to predict laboratory true mean and bias values using the sample laboratory mean (y(i)) from interlaboratory studies. The predictions developed here require that the interlaboratory and/or proficiency study be designed and conducted in a manner consistent with the assumptions of a one-way completely randomized model (CRM). Under the CRM the individual laboratory true mean and bias are not parameters but are defined to be random variables that are unobservable and considered as realized values that cannot be estimated but can be predicted using methods of "prediction." The BP method is applicable when all salient parameters are known, e.g., the consensus true overall mean (mu) and repeatability and reproducibility components (sigma2(r) and sigma2(R)), while the BLUP method is useful when sigma2(r) and sigma2(R) are known, but mu is estimated by the generalized least square estimator. Although the derivations of predictors are obtained by minimizing the mean-square error under the CRM assumptions, the predictors are the expected laboratory true mean and bias given the sample laboratory mean, i.e., conditional expectation.
本文讨论了两种预测随机变量的方法,即最佳预测器(BP)和最佳线性无偏预测器(BLUP),它们作为潜在的统计方法,用于利用实验室间研究中的样本实验室均值(y(i))来预测实验室真实均值和偏差值。此处开发的预测方法要求实验室间和/或能力验证研究的设计与实施方式要符合单向完全随机模型(CRM)的假设。在CRM模型下,各个实验室的真实均值和偏差并非参数,而是被定义为不可观测的随机变量,被视为无法估计但可通过“预测”方法进行预测的已实现值。当所有显著参数已知时,例如共识真实总体均值(μ)以及重复性和再现性分量(σ2(r)和σ2(R)),BP方法适用;而当σ2(r)和σ2(R)已知,但μ由广义最小二乘估计量估计时,BLUP方法则很有用。尽管预测器的推导是通过在CRM假设下最小化均方误差得到的,但预测器是给定样本实验室均值时的预期实验室真实均值和偏差,即条件期望。