Institute for Quantum Science and Technology, University of Calgary, Alberta T2N 1N4, Canada.
Phys Rev Lett. 2013 May 31;110(22):220501. doi: 10.1103/PhysRevLett.110.220501. Epub 2013 May 28.
We devise powerful algorithms based on differential evolution for adaptive many-particle quantum metrology. Our new approach delivers adaptive quantum metrology policies for feedback control that are orders-of-magnitude more efficient and surpass the few-dozen-particle limitation arising in methods based on particle-swarm optimization. We apply our method to the binary-decision-tree model for quantum-enhanced phase estimation as well as to a new problem: a decision tree for adaptive estimation of the unknown bias of a quantum coin in a quantum walk and show how this latter case can be realized experimentally.
我们设计了基于差分进化的强大算法,用于自适应多粒子量子计量学。我们的新方法提供了用于反馈控制的自适应量子计量学策略,其效率比基于粒子群优化的方法高出几个数量级,并且克服了后者在几十个粒子限制。我们将我们的方法应用于二进制决策树模型的量子增强相位估计以及一个新问题:用于自适应估计量子游走中未知量子硬币偏置的决策树,并展示了如何在实验中实现后者。