Institute for Quantum Information Science, University of Calgary, Calgary, Alberta, Canada T2N 1N4.
Phys Rev Lett. 2011 Dec 2;107(23):233601. doi: 10.1103/PhysRevLett.107.233601. Epub 2011 Nov 30.
Quantum-enhanced metrology infers an unknown quantity with accuracy beyond the standard quantum limit (SQL). Feedback-based metrological techniques are promising for beating the SQL but devising the feedback procedures is difficult and inefficient. Here we introduce an efficient self-learning swarm-intelligence algorithm for devising feedback-based quantum metrological procedures. Our algorithm can be trained with simulated or real-world trials and accommodates experimental imperfections, losses, and decoherence.
量子增强计量学以超越标准量子极限 (SQL) 的精度推断未知量。基于反馈的计量技术有望打破 SQL,但设计反馈程序困难且效率低下。在这里,我们引入了一种高效的自学习群体智能算法,用于设计基于反馈的量子计量程序。我们的算法可以通过模拟或真实世界的试验进行训练,并适应实验中的不完美、损耗和退相干。