Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, USA.
Anal Chem. 2013 Jul 2;85(13):6312-8. doi: 10.1021/ac400575u. Epub 2013 Jun 14.
Continuously tracking bioanalytes in vivo will enable clinicians and researchers to profile normal physiology and monitor diseased states. Current in vivo monitoring system designs are limited by invasive implantation procedures and biofouling, limiting the utility of these tools for obtaining physiologic data. In this work, we demonstrate the first success in optically tracking histamine levels in vivo using a modular, injectable sensing platform based on diamine oxidase and a phosphorescent oxygen nanosensor. Our new approach increases the range of measurable analytes by combining an enzymatic recognition element with a reversible nanosensor capable of measuring the effects of enzymatic activity. We use these enzyme nanosensors (EnzNS) to monitor the in vivo histamine dynamics as the concentration rapidly increases and decreases due to administration and clearance. The EnzNS system measured kinetics that match those reported from ex vivo measurements. This work establishes a modular approach to in vivo nanosensor design for measuring a broad range of potential target analytes. Simply replacing the recognition enzyme, or both the enzyme and nanosensor, can produce a new sensor system capable of measuring a wide range of specific analytical targets in vivo.
持续跟踪体内生物分析物将使临床医生和研究人员能够描绘正常生理机能并监测疾病状态。当前的体内监测系统设计受到有创植入程序和生物污垢的限制,限制了这些工具在获取生理数据方面的实用性。在这项工作中,我们首次成功地使用基于二胺氧化酶和磷光氧纳米传感器的模块化可注射传感平台在体内光学跟踪组胺水平。我们的新方法通过将酶识别元件与能够测量酶活性影响的可逆纳米传感器相结合,增加了可测量分析物的范围。我们使用这些酶纳米传感器 (EnzNS) 来监测体内组胺动力学,因为组胺浓度由于给药和清除而迅速增加和减少。EnzNS 系统测量的动力学与从离体测量报告的动力学相匹配。这项工作为体内纳米传感器设计建立了一种模块化方法,用于测量广泛的潜在目标分析物。只需更换识别酶,或同时更换酶和纳米传感器,就可以生成新的传感器系统,能够在体内测量广泛的特定分析目标。