Department of Production Animal Health, University of Calgary, Calgary, Alberta, Canada.
J Dairy Sci. 2013 Aug;96(8):4965-76. doi: 10.3168/jds.2012-5713. Epub 2013 Jun 13.
Concurrent data on antimicrobial use (AMU) and resistance are needed to contain antimicrobial resistance (AMR) in bacteria. The present study examined a herd-level association between AMU and AMR in Escherichia coli (n=394) and Klebsiella species (n=139) isolated from bovine intramammary infections and mastitis cases on 89 dairy farms in 4 regions of Canada [Alberta, Ontario, Québec, and Maritime Provinces (Prince Edward Island, Nova Scotia, and New Brunswick)]. Antimicrobial use data were collected using inventory of empty antimicrobial containers and antimicrobial drug use rate was calculated to quantify herd-level AMU. Minimum inhibitory concentrations (MIC) were determined using Sensititre National Antimicrobial Resistance Monitoring System (NARMS) gram-negative MIC plate (Trek Diagnostic Systems Inc., Cleveland, OH). Isolates were classified as susceptible, intermediate, or resistant. Intermediate and resistant category isolates were combined to form an AMR category, and multivariable logistic regression models were built to determine herd-level odds of AMR to tetracycline, ampicillin, cefoxitin, chloramphenicol, trimethoprim-sulfamethoxazole combination, sulfisoxazole, streptomycin and kanamycin in E. coli isolates. In the case of Klebsiella species isolates, logistic regression models were built for tetracycline and sulfisoxazole; however, no associations between AMU and AMR in Klebsiella species were observed. Ampicillin-intermediate or -resistant E. coli isolates were associated with herds that used intramammarily administered cloxacillin, penicillin-novobiocin combination, and cephapirin used for dry cow therapy [odds ratios (OR)=26, 32, and 189, respectively], and intramammary ceftiofur administered for lactating cow therapy and systemically administered penicillin (OR=162 and 2.7, respectively). Use of systemically administered penicillin on a dairy farm was associated with tetracycline and streptomycin-intermediate or -resistant E. coli isolates (OR=5.6 and 2.8, respectively). Use of cephapirin and cloxacillin administered intramammarily for dry cow therapy was associated with increasing odds of having at least 1 kanamycin-intermediate or -resistant E. coli isolate at a farm (OR=8.7 and 9.3, respectively). Use of systemically administered tetracycline and ceftiofur was associated with cefoxitin-intermediate or -resistant E. coli (OR=0.13 and 0.16, respectively); however, the odds of a dairy herd having at least 1 cefoxitin-intermediate or -resistant E. coli isolate due to systemically administered ceftiofur increased with increasing average herd parity (OR=3.1). Association between herd-level AMU and AMR in bovine mastitis coliforms was observed for certain antimicrobials. Differences in AMR between different barn types and geographical regions were not observed.
需要同时获得抗菌药物使用(AMU)和耐药性的数据,以遏制细菌的抗菌药物耐药性(AMR)。本研究检查了在加拿大 4 个地区(艾伯塔省、安大略省、魁北克省和海洋省份(爱德华王子岛、新斯科舍省和新不伦瑞克省))的 89 个奶牛场的牛乳腺炎病例和乳房炎病例中分离的大肠杆菌(n=394)和克雷伯氏菌属(n=139)的群体水平与 AMU 之间的关联。使用空的抗菌容器库存收集抗菌药物使用数据,并计算抗菌药物使用率以量化群体水平的 AMU。使用 Sensititre 国家抗菌药物耐药性监测系统(NARMS)革兰氏阴性 MIC 板(Trek 诊断系统公司,克利夫兰,俄亥俄州)测定最小抑菌浓度(MIC)。将分离物分类为敏感、中介或耐药。将中介和耐药类别分离物合并形成一个 AMR 类别,并建立多变量逻辑回归模型,以确定大肠杆菌分离物中四环素、氨苄西林、头孢西丁、氯霉素、甲氧苄啶-磺胺甲恶唑组合、磺胺异恶唑、链霉素和卡那霉素的群体水平 AMR 可能性。在克雷伯氏菌属分离物的情况下,为四环素和磺胺异恶唑建立了逻辑回归模型;然而,在克雷伯氏菌属中没有观察到 AMU 和 AMR 之间的关联。氨苄西林中介或耐药的大肠杆菌分离物与使用乳房内给予氯唑西林、青霉素-新生霉素组合和头孢匹林用于干奶牛治疗的牛群有关(比值比[OR]=26、32 和 189),以及用于泌乳奶牛治疗的乳房内给予头孢噻呋和系统给予青霉素(OR=162 和 2.7)。奶牛场系统给予青霉素与四环素和链霉素中介或耐药的大肠杆菌分离物有关(OR=5.6 和 2.8)。奶牛场使用头孢匹林和氯唑西林进行干奶牛治疗与至少有 1 株卡那霉素中介或耐药的大肠杆菌分离物的农场数量增加有关(OR=8.7 和 9.3)。系统给予四环素和头孢噻肟与头孢西丁中介或耐药的大肠杆菌有关(OR=0.13 和 0.16);然而,由于系统给予头孢噻肟,奶牛群中至少有 1 株头孢西丁中介或耐药的大肠杆菌分离物的可能性随着平均牛群胎次的增加而增加(OR=3.1)。在牛乳腺炎大肠埃希菌中观察到群体水平 AMU 和 AMR 之间的关联,这与某些抗菌药物有关。不同畜舍类型和地理区域之间没有观察到 AMR 差异。