Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA.
Nature. 2013 Jul 18;499(7458):364-8. doi: 10.1038/nature12232. Epub 2013 Jun 16.
Efficient carbon utilization is critical to the survival of microorganisms in competitive environments. To optimize energy usage, bacteria have developed an integrated control system to preferentially uptake carbohydrates that support rapid growth. The availability of a preferred carbon source, such as glucose, represses the synthesis and activities of proteins necessary for the transport and metabolism of secondary carbon sources. This regulatory phenomenon is defined as carbon catabolite repression. In enteric bacteria, the key player of carbon catabolite repression is a component of the glucose-specific phosphotransferase system, enzyme IIA (EIIA(Glc)). It is known that unphosphorylated EIIA(Glc) binds to and inhibits a variety of transporters when glucose is available. However, understanding the underlying molecular mechanism has been hindered by the complete absence of structures for any EIIA(Glc)-transporter complexes. Here we present the 3.9 Å crystal structure of Escherichia coli EIIA(Glc) in complex with the maltose transporter, an ATP-binding cassette (ABC) transporter. The structure shows that two EIIA(Glc) molecules bind to the cytoplasmic ATPase subunits, stabilizing the transporter in an inward-facing conformation and preventing the structural rearrangements necessary for ATP hydrolysis. We also show that the half-maximal inhibitory concentrations of the full-length EIIA(Glc) and an amino-terminal truncation mutant differ by 60-fold, consistent with the hypothesis that the amino-terminal region, disordered in the crystal structure, functions as a membrane anchor to increase the effective EIIA(Glc) concentration at the membrane. Together these data suggest a model of how the central regulatory protein EIIA(Glc) allosterically inhibits maltose uptake in E. coli.
高效利用碳对于微生物在竞争环境中的生存至关重要。为了优化能量利用,细菌已经开发出一种综合控制系统,优先摄取支持快速生长的碳水化合物。当有首选碳源(如葡萄糖)可用时,它会抑制用于运输和代谢次要碳源的蛋白质的合成和活性。这种调节现象被定义为碳分解代谢物阻遏。在肠道细菌中,碳分解代谢物阻遏的关键参与者是葡萄糖特异性磷酸转移酶系统的一个组成部分,酶 IIA(EIIA(Glc))。已知当葡萄糖存在时,未磷酸化的 EIIA(Glc) 会结合并抑制多种转运蛋白。然而,由于任何 EIIA(Glc)-转运蛋白复合物的结构都完全缺失,因此理解其潜在的分子机制一直受到阻碍。在这里,我们展示了 3.9Å 的大肠杆菌 EIIA(Glc) 与麦芽糖转运蛋白(一种 ATP 结合盒(ABC)转运蛋白)复合物的晶体结构。该结构表明,两个 EIIA(Glc) 分子结合到细胞质 ATP 酶亚基上,将转运蛋白稳定在内向构象,并阻止了 ATP 水解所需的结构重排。我们还表明,全长 EIIA(Glc) 和氨基末端截断突变体的半抑制浓度相差 60 倍,这与假设一致,即晶体结构中无序的氨基末端区域作为膜锚定,增加了膜上有效 EIIA(Glc) 浓度。这些数据共同提出了一个模型,说明了中央调节蛋白 EIIA(Glc) 如何变构抑制大肠杆菌中的麦芽糖摄取。