Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
FEBS Open Bio. 2012 Oct 27;2:345-52. doi: 10.1016/j.fob.2012.10.003. Print 2012.
RNase H1 from extreme halophilic archaeon Halobacterium sp. NRC-1 (Halo-RNH1) consists of an N-terminal domain with unknown function and a C-terminal RNase H domain. It is characterized by the high content of acidic residues on the protein surface. The far- and near-UV CD spectra of Halo-RNH1 suggested that Halo-RNH1 assumes a partially folded structure in the absence of salt and divalent metal ions. It requires either salt or divalent metal ions for folding. However, thermal denaturation of Halo-RNH1 analyzed in the presence of salt and/or divalent metal ions by CD spectroscopy suggested that salt and divalent metal ions independently stabilize the protein and thereby facilitate folding. Divalent metal ions stabilize the protein probably by binding mainly to the active site and suppressing negative charge repulsions at this site. Salt stabilizes the protein probably by increasing hydrophobic interactions at the protein core and decreasing negative charge repulsions on the protein surface. Halo-RNH1 exhibited activity in the presence of divalent metal ions regardless of the presence or absence of 3 M NaCl. However, higher concentrations of divalent metal ions are required for activity in the absence of salt to facilitate folding. Thus, divalent metal ions play a dual role in catalysis and folding of Halo-RNH1. Construction of the Halo-RNH1 derivatives lacking an N- or C-terminal domain, followed by biochemical characterizations, indicated that an N-terminal domain is dispensable for stability, activity, folding, and substrate binding of Halo-RNH1.
极端嗜盐古菌 Halobacterium sp. NRC-1(Halo-RNH1)的 RNase H1 由具有未知功能的 N 端结构域和 C 端 RNase H 结构域组成。它的特点是蛋白质表面含有大量酸性残基。远紫外和近紫外圆二色性(CD)光谱表明,Halo-RNH1 在无盐和二价金属离子存在的情况下呈部分折叠结构。它的折叠需要盐或二价金属离子。然而,通过 CD 光谱分析,在有盐和/或二价金属离子存在的情况下,Halo-RNH1 的热变性表明盐和二价金属离子独立地稳定蛋白质,从而促进其折叠。二价金属离子可能通过主要结合到活性位点并抑制该位点的负电荷排斥来稳定蛋白质。盐可能通过增加蛋白质核心的疏水相互作用并减少蛋白质表面的负电荷排斥来稳定蛋白质。Halo-RNH1 在有二价金属离子存在的情况下表现出活性,无论是否存在 3 M NaCl。然而,在没有盐的情况下,需要更高浓度的二价金属离子才能促进折叠,从而提高活性。因此,二价金属离子在 Halo-RNH1 的催化和折叠中发挥双重作用。构建缺乏 N 端或 C 端结构域的 Halo-RNH1 衍生物,并进行生化特性分析表明,N 端结构域对于 Halo-RNH1 的稳定性、活性、折叠和底物结合是可有可无的。