Suppr超能文献

一种来自亚特兰蒂斯 II 深海卤水湖的多极端嗜热醇脱氢酶。

A polyextremophilic alcohol dehydrogenase from the Atlantis II Deep Red Sea brine pool.

机构信息

KAUST Catalysis Center (KCC) King Abdullah University of Science and Technology (KAUST) Thuwal Saudi Arabia.

Center for Integrated Protein Science Munich at the Department of Chemistry Technical University of Munich (TUM) Garching Germany.

出版信息

FEBS Open Bio. 2018 Dec 18;9(2):194-205. doi: 10.1002/2211-5463.12557. eCollection 2019 Feb.

Abstract

Enzymes originating from hostile environments offer exceptional stability under industrial conditions and are therefore highly in demand. Using single-cell genome data, we identified the alcohol dehydrogenase (ADH) gene, , from the Atlantis II Deep Red Sea brine pool. ADH/A1a is highly active at elevated temperatures and high salt concentrations (optima at 70 °C and 4 m KCl) and withstands organic solvents. The polyextremophilic ADH/A1a exhibits a broad substrate scope including aliphatic and aromatic alcohols and is able to reduce cinnamyl-methyl-ketone and raspberry ketone in the reverse reaction, making it a possible candidate for the production of chiral compounds. Here, we report the affiliation of ADH/A1a to a rare enzyme family of microbial cinnamyl alcohol dehydrogenases and explain unique structural features for halo- and thermoadaptation.

摘要

来源于恶劣环境的酶在工业条件下具有非凡的稳定性,因此需求量很大。我们利用单细胞基因组数据,从亚特兰蒂斯 II 深海卤水湖中鉴定出了醇脱氢酶(ADH)基因 。ADH/A1a 在高温和高盐浓度下(最佳温度为 70°C 和 4 m KCl)高度活跃,并能耐受有机溶剂。多极端适应的 ADH/A1a 表现出广泛的底物范围,包括脂肪族和芳香族醇,并且能够在逆反应中还原肉桂基甲基酮和覆盆子酮,使其成为手性化合物生产的潜在候选物。在这里,我们将 ADH/A1a 与微生物肉桂醇脱氢酶的罕见酶家族联系起来,并解释了其对卤化物和热适应的独特结构特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a4f/6356862/42a0e2018395/FEB4-9-194-g001.jpg

相似文献

1
A polyextremophilic alcohol dehydrogenase from the Atlantis II Deep Red Sea brine pool.
FEBS Open Bio. 2018 Dec 18;9(2):194-205. doi: 10.1002/2211-5463.12557. eCollection 2019 Feb.
2
3
Identification and Experimental Characterization of an Extremophilic Brine Pool Alcohol Dehydrogenase from Single Amplified Genomes.
ACS Chem Biol. 2018 Jan 19;13(1):161-170. doi: 10.1021/acschembio.7b00792. Epub 2017 Dec 18.
6
Overexpression, purification and characterization of Mycobacterium bovis BCG alcohol dehydrogenase.
Eur J Biochem. 1999 Jun;262(2):299-307. doi: 10.1046/j.1432-1327.1999.00369.x.
7
A comparison of two novel alcohol dehydrogenase enzymes (ADH1 and ADH2) from the extreme halophile Haloferax volcanii.
Appl Microbiol Biotechnol. 2013 Jan;97(1):195-203. doi: 10.1007/s00253-012-4074-4. Epub 2012 Apr 25.
8
Enrichment of extremophilic exoelectrogens in microbial electrolysis cells using Red Sea brine pools as inocula.
Bioresour Technol. 2017 Sep;239:82-86. doi: 10.1016/j.biortech.2017.04.122. Epub 2017 May 3.
9
The highly stable alcohol dehydrogenase of Thermomicrobium roseum: purification and molecular characterization.
Comp Biochem Physiol B Biochem Mol Biol. 2002 Jun;132(2):415-22. doi: 10.1016/s1096-4959(02)00051-9.

引用本文的文献

1
A pH-dependent shift of redox cofactor specificity in a benzyl alcohol dehydrogenase of aromatoleum aromaticum EbN1.
Appl Microbiol Biotechnol. 2024 Jul 8;108(1):410. doi: 10.1007/s00253-024-13225-z.
2
A systematic analysis of affinity tags in the haloarchaeal expression system, for protein purification.
Front Microbiol. 2024 May 30;15:1403623. doi: 10.3389/fmicb.2024.1403623. eCollection 2024.
3
Exploring Oxidoreductases from Extremophiles for Biosynthesis in a Non-Aqueous System.
Int J Mol Sci. 2023 Mar 29;24(7):6396. doi: 10.3390/ijms24076396.
4
Bioengineering of air-filled protein nanoparticles by genetic and chemical functionalization.
J Nanobiotechnology. 2023 Mar 25;21(1):108. doi: 10.1186/s12951-023-01866-7.
5
Functional characterization of prokaryotic dark matter: the road so far and what lies ahead.
Curr Res Microb Sci. 2022 Aug 7;3:100159. doi: 10.1016/j.crmicr.2022.100159. eCollection 2022.
6
Air-loaded Gas Vesicle Nanoparticles Promote Cell Growth in Three-dimensional Bioprinted Tissue Constructs.
Int J Bioprint. 2022 Jun 1;8(3):489. doi: 10.18063/ijb.v8i3.489. eCollection 2022.
8
Industrial Biotechnology Based on Enzymes From Extreme Environments.
Front Bioeng Biotechnol. 2022 Apr 5;10:870083. doi: 10.3389/fbioe.2022.870083. eCollection 2022.
9
Novel Enzymes From the Red Sea Brine Pools: Current State and Potential.
Front Microbiol. 2021 Oct 27;12:732856. doi: 10.3389/fmicb.2021.732856. eCollection 2021.
10
Bioprospecting of Novel Extremozymes From Prokaryotes-The Advent of Culture-Independent Methods.
Front Microbiol. 2021 Feb 10;12:630013. doi: 10.3389/fmicb.2021.630013. eCollection 2021.

本文引用的文献

1
Dynamic structure mediates halophilic adaptation of a DNA polymerase from the deep-sea brines of the Red Sea.
FASEB J. 2018 Jun;32(6):3346-3360. doi: 10.1096/fj.201700862RR. Epub 2018 Jan 24.
3
Identification and Experimental Characterization of an Extremophilic Brine Pool Alcohol Dehydrogenase from Single Amplified Genomes.
ACS Chem Biol. 2018 Jan 19;13(1):161-170. doi: 10.1021/acschembio.7b00792. Epub 2017 Dec 18.
4
MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization.
Brief Bioinform. 2019 Jul 19;20(4):1160-1166. doi: 10.1093/bib/bbx108.
5
Extremozymes: A Potential Source for Industrial Applications.
J Microbiol Biotechnol. 2017 Apr 28;27(4):649-659. doi: 10.4014/jmb.1611.11006.
6
CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.
Nucleic Acids Res. 2017 Jan 4;45(D1):D200-D203. doi: 10.1093/nar/gkw1129. Epub 2016 Nov 29.
7
InterPro in 2017-beyond protein family and domain annotations.
Nucleic Acids Res. 2017 Jan 4;45(D1):D190-D199. doi: 10.1093/nar/gkw1107. Epub 2016 Nov 29.
10
BlastKOALA and GhostKOALA: KEGG Tools for Functional Characterization of Genome and Metagenome Sequences.
J Mol Biol. 2016 Feb 22;428(4):726-731. doi: 10.1016/j.jmb.2015.11.006. Epub 2015 Nov 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验