Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 125 Cogswell, 110 Eighth Street, Troy, New York 12180, United States.
ACS Appl Mater Interfaces. 2013 Aug 14;5(15):7604-12. doi: 10.1021/am401923f. Epub 2013 Jul 12.
Multilayer Zn(II) tetraphenylporphyrin chromophores, assembled using copper-catalyzed azide-alkyne cycloaddition (CuAAC), provide a new sensitization scheme that could be useful in dye-sensitized solar cells (DSSCs). We report on the photoelectrochemical responses of multilayer films of Zn(II) 5,10,15,20-tetra(4-ethynylphenyl)porphyrin (1) assembled on planar ITO substrates operating as a p-type DSSC using three different redox mediators. The traditional I(-)/I3(-) redox couple results in the greatest short circuit current densities (JSC) but very low open circuit potentials (VOC). The use of cobalt sepulchrate (Co(sep)) and cobalt tris-bipyridine (Co(bpy)3) as redox mediators generates higher VOC values, but at the expense of lower photocurrents. These results highlight the inherent differences in the interactions between the redox mediator and Zn(II) tetraphenylporphyrin multilayer films. Increasing the porphyrin content through multilayer growth proved to be effective in increasing the performance of photoelectrochemical cells with all three redox mediators. Cells using I(-)/I3(-) reached maximum performance (power output) at five porphyrin layers, Co(bpy)3 at five layers, and Co(sep) at three layers. For all mediators, JSC increases with the addition of porphyrin layers beyond a monolayer. However, JSC reaches a maximum value at a point greater than one layer after which it decreases, presumably due to exciton diffusion limitations and the insulating effects of the multilayer film. Similarly, all cells also reach a maximum VOC beyond one porphyrin layer. We show that porphyrin arrays assembled using newly developed CuAAC layer-by-layer growth may be useful as a multilayer sensitization scheme for use in photoelectrochemical cells.
多层 Zn(II) 四苯基卟啉染料,通过铜催化叠氮-炔环加成(CuAAC)反应组装,为染料敏化太阳能电池(DSSC)提供了一种新的敏化方案。我们报告了在平面 ITO 基底上组装的 Zn(II) 5,10,15,20-四(4-乙炔基苯基)卟啉(1)多层膜的光电化学响应,该膜作为 p 型 DSSC 使用三种不同的氧化还原介体制备。传统的 I(-)/I3(-)氧化还原对产生最大的短路电流密度(JSC),但开路电位(VOC)非常低。使用钴卟啉(Co(sep))和钴三联吡啶(Co(bpy)3)作为氧化还原介体制备,产生更高的 VOC 值,但以更低的光电流为代价。这些结果突出了氧化还原介体与 Zn(II) 四苯基卟啉多层膜之间相互作用的固有差异。通过多层生长增加卟啉含量,被证明可以有效提高所有三种氧化还原介体制备的光电化学电池的性能。使用 I(-)/I3(-)的电池在五层卟啉时达到最大性能(功率输出),使用 Co(bpy)3时在五层,使用 Co(sep)时在三层。对于所有的介体,JSC 在单层之后的卟啉层增加时增加。然而,在超过一层之后,JSC 达到最大值,然后下降,可能是由于激子扩散限制和多层膜的绝缘效应。同样,所有的电池在超过一层卟啉时也达到最大 VOC。我们表明,使用新开发的 CuAAC 层层生长组装的卟啉阵列可用作光电化学电池的多层敏化方案。