Department of Chemistry and Chemical Biology and The Baruch '60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute , Troy, New York 12180, United States.
Biochemistry. 2013 Jul 16;52(28):4781-90. doi: 10.1021/bi3012093. Epub 2013 Jul 1.
The solar water-splitting protein complex, photosystem II, catalyzes one of the most energetically demanding reactions in Nature by using light energy to drive the catalytic oxidation of water. Photosystem II contains two symmetrically placed tyrosine residues, YD and YZ, one on each subunit of the heterodimeric core. The YZ residue is kinetically competent and is proposed to be directly involved in the proton-coupled electron transfer reactions of water oxidation. In contrast, the YD proton-coupled electron transfer redox poises the catalytic tetranuclear manganese cluster and may electrostatically tune the adjacent monomeric redox-active chlorophyll and β-carotene in the secondary electron transfer pathway of photosystem II. In this study, we apply pulsed high-frequency electron paramagnetic resonance (EPR) and electron nuclear double-resonance (ENDOR) spectroscopy to study the photochemical proton-coupled electron transfer (PCET) intermediates of YD. We detect the "unrelaxed" and "relaxed" photoinduced PCET intermediates of YD using high-frequency EPR spectroscopy and observe an increase of the g anisotropy upon temperature-induced relaxation of the unrelaxed intermediate to the relaxed state as previously observed by Faller et al. [(2002) Biochemistry 41, 12914-12920; (2003) Proc. Natl. Acad. Sci. U.S.A. 100, 8732-8735]. This observation suggests the presence of structural differences between the two intermediates. We probe the possible structural differences by performing high-frequency (2)H ENDOR spectroscopy experiments. On the basis of numerical simulations of the experimental (2)H ENDOR spectra, we confirm that (i) there is a significant change in the H-bond length of the tyrosyl radical in the unrelaxed (1.49 Å) and relaxed (1.75 Å) PCET intermediates. This observation suggests that the D2-His189 residue is deprotonated prior to electron transfer at the YD residue and (ii) there are negligible changes in the conformation of the tyrosyl ring in the unrelaxed and relaxed PCET intermediates of YD.
太阳能水分解蛋白复合物,光系统 II,利用光能驱动水的催化氧化,催化自然界中最耗能的反应之一。光系统 II 包含两个对称放置的酪氨酸残基,YD 和 YZ,每个亚基的异二聚体核心各一个。YZ 残基具有动力学能力,被提议直接参与水氧化的质子耦合电子转移反应。相比之下,YD 质子耦合电子转移氧化还原电势使催化四核锰簇,并可能静电调节光系统 II 中次级电子转移途径中的相邻单体氧化还原活性叶绿素和β-胡萝卜素。在这项研究中,我们应用脉冲高频电子顺磁共振(EPR)和电子-核双共振(ENDOR)光谱来研究 YD 的光化学质子耦合电子转移(PCET)中间体。我们使用高频 EPR 光谱检测 YD 的“未弛豫”和“弛豫”光诱导 PCET 中间体,并观察到在未弛豫中间体到弛豫状态的温度诱导弛豫过程中 g 各向异性增加,正如 Faller 等人之前观察到的那样。[(2002)生物化学 41,12914-12920;(2003)Proc。美国国家科学院。美国 100,8732-8735]。这一观察表明两个中间态之间存在结构差异。我们通过进行高频(2)H ENDOR 光谱实验来探测可能的结构差异。基于实验(2)H ENDOR 光谱的数值模拟,我们证实:(i)在未弛豫(1.49 Å)和弛豫(1.75 Å)PCET 中间体中,酪氨酸自由基的氢键长度有显著变化。这一观察表明,在 YD 残基处电子转移之前,D2-His189 残基去质子化,(ii)在 YD 的未弛豫和弛豫 PCET 中间体中,酪氨酸环的构象几乎没有变化。