Tokyo Institute of Technology, Tokyo 152-8552, Japan.
Neural Comput. 2013 Oct;25(10):2734-75. doi: 10.1162/NECO_a_00492. Epub 2013 Jun 18.
We address the problem of estimating the difference between two probability densities. A naive approach is a two-step procedure of first estimating two densities separately and then computing their difference. However, this procedure does not necessarily work well because the first step is performed without regard to the second step, and thus a small estimation error incurred in the first stage can cause a big error in the second stage. In this letter, we propose a single-shot procedure for directly estimating the density difference without separately estimating two densities. We derive a nonparametric finite-sample error bound for the proposed single-shot density-difference estimator and show that it achieves the optimal convergence rate. We then show how the proposed density-difference estimator can be used in L²-distance approximation. Finally, we experimentally demonstrate the usefulness of the proposed method in robust distribution comparison such as class-prior estimation and change-point detection.
我们解决了估计两个概率密度之间差异的问题。一种简单的方法是两步法,首先分别估计两个密度,然后计算它们的差异。然而,这种方法并不一定有效,因为第一步是在不考虑第二步的情况下进行的,因此第一阶段的小估计误差可能会导致第二阶段的大误差。在这封信中,我们提出了一种无需分别估计两个密度即可直接估计密度差的单次处理方法。我们为所提出的单次密度差估计器导出了一个非参数有限样本误差界,并证明它达到了最优的收敛速度。然后我们展示了如何在 L²距离逼近中使用所提出的密度差估计器。最后,我们通过实验证明了该方法在稳健分布比较(如类先验估计和变点检测)中的有用性。