Sasaki Hiroaki, Noh Yung-Kyun, Niu Gang, Sugiyama Masashi
Graduate School of Information Science, Nara Institute of Science and Technology, Nara 630-0192, Japan
Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-742, Korea
Neural Comput. 2016 Jun;28(6):1101-40. doi: 10.1162/NECO_a_00835. Epub 2016 May 3.
Estimating the derivatives of probability density functions is an essential step in statistical data analysis. A naive approach to estimate the derivatives is to first perform density estimation and then compute its derivatives. However, this approach can be unreliable because a good density estimator does not necessarily mean a good density derivative estimator. To cope with this problem, in this letter, we propose a novel method that directly estimates density derivatives without going through density estimation. The proposed method provides computationally efficient estimation for the derivatives of any order on multidimensional data with a hyperparameter tuning method and achieves the optimal parametric convergence rate. We further discuss an extension of the proposed method by applying regularized multitask learning and a general framework for density derivative estimation based on Bregman divergences. Applications of the proposed method to nonparametric Kullback-Leibler divergence approximation and bandwidth matrix selection in kernel density estimation are also explored.
估计概率密度函数的导数是统计数据分析中的一个重要步骤。一种估计导数的简单方法是首先进行密度估计,然后计算其导数。然而,这种方法可能不可靠,因为一个好的密度估计器并不一定意味着一个好的密度导数估计器。为了解决这个问题,在这封信中,我们提出了一种新颖的方法,该方法无需进行密度估计即可直接估计密度导数。所提出的方法通过超参数调整方法为多维数据上的任意阶导数提供了计算效率高的估计,并实现了最优的参数收敛速度。我们进一步讨论了通过应用正则化多任务学习对所提出方法的扩展以及基于布雷格曼散度的密度导数估计的通用框架。还探索了所提出方法在非参数库尔贝克 - 莱布勒散度近似和核密度估计中的带宽矩阵选择方面的应用。