Division of Cardiac Surgery, Keenan Research Centre in the Li Ka Shing Knowledge Institute at St Michael's Hospital, Toronto, Ontario, Canada.
Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
J Thorac Cardiovasc Surg. 2014 Mar;147(3):1065-1072.e1. doi: 10.1016/j.jtcvs.2013.04.042. Epub 2013 Jun 15.
Autophagy is an evolutionary conserved adaptive response that is believed to promote cell survival in response to stressful stimuli via recycling of precursors derived from the degradation of endogenous cellular components. The autophagic molecular machinery is controlled by a large family of autophagy-related genes (ATGs) and downstream regulators. We sought to define the autophagy gene fingerprint associated with human ischemia and reperfusion (IR) injury using an intraoperative model developed by Sellke and colleagues.
Right atrial appendages, collected from human hearts before and after cardioplegic arrest and after reperfusion, were submitted for polymerase chain reaction (PCR) array, quantitative real-time PCR, and immunoblot analysis for autophagy proteins and their associated upstream regulators.
Perioperative IR significantly upregulated 11 (13.1%) and downregulated 3 (3.6%) of 84 ATGs. Specifically, there were increases in the autophagy machinery components ATG4A, ATG4C, and ATG4D; tumor necrosis factor-related apoptosis-inducing ligand, MAPK8 and BCL2L1; and chaperone-mediated autophagy activity with increased heat shock protein (HSP) A8, HSP90AA1, and a-synuclein. Autophagy activity was confirmed through observations of higher LC3-I levels and an increase in the LC3-II/LC3-I ratio. Autophagy activation coincided with increased AMPK activation and decreased protein levels of the mammalian target of rapamycin, the latter a key negative regulator of autophagy.
We provide the first human cardiac fingerprint of autophagy gene expression in response to IR. These findings may inform on appropriate cell- and gene-based therapeutic approaches to limit aberrant cardiac injury.
自噬是一种进化上保守的适应性反应,据信它通过内源性细胞成分降解产生的前体的再循环来促进应激刺激下的细胞存活。自噬的分子机制受一大类自噬相关基因 (ATGs) 和下游调节剂控制。我们试图使用 Sellke 及其同事开发的术中模型来定义与人类缺血再灌注 (IR) 损伤相关的自噬基因特征。
在心脏停搏和再灌注前后从人类心脏中采集右心房附件,进行聚合酶链反应 (PCR) 阵列、定量实时 PCR 和免疫印迹分析,以检测自噬蛋白及其相关上游调节剂。
围手术期 IR 显著上调了 84 个 ATGs 中的 11 个(13.1%)和下调了 3 个(3.6%)。具体而言,自噬机制成分 ATG4A、ATG4C 和 ATG4D、肿瘤坏死因子相关凋亡诱导配体、MAPK8 和 BCL2L1 以及伴侣介导的自噬活性增加,热休克蛋白 (HSP) A8、HSP90AA1 和 a-突触核蛋白增加。通过观察 LC3-I 水平升高和 LC3-II/LC3-I 比值增加来证实自噬活性。自噬激活伴随着 AMPK 激活增加和哺乳动物雷帕霉素靶蛋白 (mTOR) 的蛋白水平降低,后者是自噬的关键负调节剂。
我们提供了人类心脏对 IR 反应的自噬基因表达的第一个指纹图谱。这些发现可能为限制异常心脏损伤提供适当的基于细胞和基因的治疗方法提供信息。