Institut Quimic de Sarrià, Universitat Ramon Llull, Via Augusta 390, E-08017, Barcelona, Spain.
J Am Chem Soc. 2013 Jul 3;135(26):9564-7. doi: 10.1021/ja4020524. Epub 2013 Jun 24.
The genetically encodable fluorescent tag miniSOG is expected to revolutionize correlative light- and electron microscopy due to its ability to produce singlet oxygen upon light irradiation. The quantum yield of this process was reported as ΦΔ = 0.47 ± 0.05, as derived from miniSOG's ability to photooxidize the fluorescent probe anthracene dipropionic acid (ADPA). In this report, a significantly smaller value of ΦΔ = 0.03 ± 0.01 is obtained by two methods: direct measurement of its phosphorescence at 1275 nm and chemical trapping using uric acid as an alternative probe. We present insight into the photochemistry of miniSOG and ascertain the reasons for the discrepancy in ΦΔ values. We find that miniSOG oxidizes ADPA by both singlet oxygen-dependent and -independent processes. We also find that cumulative irradiation of miniSOG increases its ΦΔ value ~10-fold due to a photoinduced transformation of the protein. This may be the reason why miniSOG outperforms other fluorescent proteins reported to date as singlet oxygen generators.
由于其在光照射下产生单线态氧的能力,可遗传编码的荧光标签 miniSOG 有望彻底改变相关的光镜和电子显微镜技术。该过程的量子产率 ΦΔ 为 0.47 ± 0.05,这是根据 miniSOG 光氧化荧光探针蒽二丙酸(ADPA)的能力推导得出的。在本报告中,通过两种方法获得了显著更小的值 ΦΔ = 0.03 ± 0.01:在 1275nm 处直接测量其磷光,以及使用尿酸作为替代探针进行化学捕获。我们深入了解了 miniSOG 的光化学,并确定了 ΦΔ 值差异的原因。我们发现,miniSOG 通过依赖于单线态氧和非依赖于单线态氧的过程氧化 ADPA。我们还发现,由于蛋白质的光诱导转化,miniSOG 的累积照射将其 ΦΔ 值增加了约 10 倍。这可能就是为什么 miniSOG 作为单线态氧发生器优于迄今为止报道的其他荧光蛋白的原因。