Suppr超能文献

关联样本特征机:一种联合特征样本选择的稀疏贝叶斯学习方法。

The relevance sample-feature machine: a sparse Bayesian learning approach to joint feature-sample selection.

出版信息

IEEE Trans Cybern. 2013 Dec;43(6):2241-54. doi: 10.1109/TCYB.2013.2260736.

Abstract

This paper introduces a novel sparse Bayesian machine-learning algorithm for embedded feature selection in classification tasks. Our proposed algorithm, called the relevance sample feature machine (RSFM), is able to simultaneously choose the relevance samples and also the relevance features for regression or classification problems. We propose a separable model in feature and sample domains. Adopting a Bayesian approach and using Gaussian priors, the learned model by RSFM is sparse in both sample and feature domains. The proposed algorithm is an extension of the standard RVM algorithm, which only opts for sparsity in the sample domain. Experimental comparisons on synthetic as well as benchmark data sets show that RSFM is successful in both feature selection (eliminating the irrelevant features) and accurate classification. The main advantages of our proposed algorithm are: less system complexity, better generalization and avoiding overfitting, and less computational cost during the testing stage.

摘要

本文提出了一种新的稀疏贝叶斯机器学习算法,用于分类任务中的嵌入式特征选择。我们提出的算法称为相关样本特征机(RSFM),能够同时选择相关样本和相关特征,用于回归或分类问题。我们在特征和样本域中提出了一个可分离的模型。采用贝叶斯方法和使用高斯先验,RSFM 学习到的模型在样本和特征域中都是稀疏的。所提出的算法是标准 RVM 算法的扩展,该算法仅在样本域中选择稀疏性。在合成和基准数据集上的实验比较表明,RSFM 在特征选择(消除不相关特征)和准确分类方面都很成功。我们提出的算法的主要优点是:系统复杂度低、泛化能力更好、避免过拟合,以及在测试阶段计算成本低。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验