Department of Physics, The University of Hong Kong, Hong Kong, China.
Nat Commun. 2013;4:2053. doi: 10.1038/ncomms3053.
In monolayer group-VI transition metal dichalcogenides, charge carriers have spin and valley degrees of freedom, both associated with magnetic moments. On the other hand, the layer degree of freedom in multilayers is associated with electrical polarization. Here we show that transition metal dichalcogenide bilayers offer an unprecedented platform to realize a strong coupling between the spin, valley and layer pseudospin of holes. Such coupling gives rise to the spin Hall effect and spin-dependent selection rule for optical transitions in inversion symmetric bilayer and leads to a variety of magnetoelectric effects permitting quantum manipulation of these electronic degrees of freedom. Oscillating electric and magnetic fields can both drive the hole spin resonance where the two fields have valley-dependent interference, making an interplay between the spin and valley as information carriers possible for potential valley-spintronic applications. We show how to realize quantum gates on the spin qubit controlled by the valley bit.
在单层 V 族过渡金属二卤族化合物中,载流子具有自旋和谷自由度,这两者都与磁矩有关。另一方面,多层中的层自由度与电极化有关。在这里,我们表明,过渡金属二卤族化合物双层提供了一个前所未有的平台,以实现孔的自旋、谷和层赝自旋之间的强耦合。这种耦合导致了自旋霍尔效应和自旋相关的光学跃迁选择定则在反转对称双层中,并导致各种磁电效应,允许对这些电子自由度进行量子操作。振荡电场和磁场都可以驱动孔自旋共振,其中两个场具有谷相关的干涉,使得自旋和谷作为信息载体之间的相互作用成为可能,用于潜在的谷自旋电子学应用。我们展示了如何在由谷位控制的自旋量子位上实现量子门。