Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada.
ACS Nano. 2013 Jul 23;7(7):5757-62. doi: 10.1021/nn401396y. Epub 2013 Jun 24.
Field-effect transistors have been widely used to study electronic transport and doping in colloidal quantum dot solids to great effect. However, the full power of these devices to elucidate the electronic structure of materials has yet to be harnessed. Here, we deploy nanodielectric field-effect transistors to map the energy landscape within the band gap of a colloidal quantum dot solid. We exploit the self-limiting nature of the potentiostatic anodization growth mode to produce the thinnest usable gate dielectric, subject to our voltage breakdown requirements defined by the Fermi sweep range of interest. Lead sulfide colloidal quantum dots are applied as the active region and are treated with varying solvents and ligands. In an analysis complementary to the mobility trends commonly extracted from field-effect transistor studies, we focus instead on the subthreshold regime and map out the density of trap states in these nanocrystal films. The findings point to the importance of comprehensively mapping the electronic band- and gap-structure within real quantum solids, and they suggest a new focus in investigating quantum dot solids with an aim toward improving optoelectronic device performance.
场效应晶体管已被广泛用于研究胶体量子点固体中的电子输运和掺杂,效果显著。然而,这些器件在阐明材料的电子结构方面的全部潜力尚未被开发。在这里,我们使用纳米介电层场效应晶体管来绘制胶体量子点固体带隙内的能量景观。我们利用恒电位阳极氧化生长模式的自限制特性来产生最薄的可用栅介质,同时满足我们感兴趣的费米扫掠范围的电压击穿要求。硫化铅胶体量子点被用作活性区域,并经过不同溶剂和配体的处理。在与通常从场效应晶体管研究中提取的迁移率趋势互补的分析中,我们将重点放在亚阈值区,并绘制出这些纳米晶薄膜中的陷阱态密度。这些发现表明全面绘制真实量子固体中的能带和能隙结构的重要性,并表明在研究量子点固体以提高光电设备性能方面的一个新重点。