Department of Electrical Engineering and Center for Micro/Nano Science and Technology, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan.
Biosens Bioelectron. 2013 Nov 15;49:297-304. doi: 10.1016/j.bios.2013.05.002. Epub 2013 Jun 1.
We present an advanced technique improving upon the micron-sized particle trap integrated in biochip systems using a planar structure to generate an adjustable trapping position by utilizing voltage phase-controlled (VPC) method and negative dielectrophoresis (nDEP) theory in high conductivity physiological media. The designed planar and split structure is composed of independent components of measuring and trapping micro-electrodes. Through different voltage configurations on the device, the trapped position of single particles/cells was selected and adjusted in vertical and horizontal directions. The numerical simulations verify our theoretical predictions of the effects at the various voltages. It shows that the trapped position can be adjusted in the vertical (0 to 26 μm) and horizontal (0 to 74 μm) directions. In experiments, the single particles/cells is captured, measured, and then released, with the same process being repeated twice to demonstrate the precision of the positioning. The measurement results determined that particles at various heights result in different magnitude values, while the impedance error is less than 5% for the proposed electrode layout. Finally, the experiments are performed to verify that a particle/cell can be precisely trapped on the selected site in both the vertical and horizontal directions.
我们提出了一种改进的微粒子捕获技术,该技术在生物芯片系统中集成了平面结构,通过利用电压相位控制(VPC)方法和高导电性生理介质中的负介电泳(nDEP)理论,在平面结构中生成可调节的捕获位置。所设计的平面和分裂结构由独立的测量和捕获微电极组件组成。通过在设备上采用不同的电压配置,可以在垂直和水平方向上选择和调整单个粒子/细胞的捕获位置。数值模拟验证了我们对各种电压影响的理论预测。结果表明,捕获位置可以在垂直方向(0 至 26 μm)和水平方向(0 至 74 μm)上进行调节。在实验中,捕获、测量和释放单个粒子/细胞,并重复两次相同的过程,以证明定位的精度。测量结果确定,不同高度的粒子会导致不同的幅度值,而对于所提出的电极布局,阻抗误差小于 5%。最后,进行实验以验证在垂直和水平方向上都可以在所选位置精确捕获粒子/细胞。