Suppr超能文献

分析脉冲激素时间序列数据的方法比较。

A comparison of methods for analyzing time series of pulsatile hormone data.

机构信息

Department of Biostatistics and Informatics, University of Colorado Denver, 13001 E. 17th PL, MS B119, Aurora, CO, 80047, U.S.A.

出版信息

Stat Med. 2013 Nov 20;32(26):4624-38. doi: 10.1002/sim.5882. Epub 2013 Jun 21.

Abstract

Many endocrine systems are regulated by pulsatile hormones - hormones that are secreted intermittently in boluses rather than continuously over time. To study pulsatile secretion, blood is drawn every few minutes for an extended period. The result is a time series of hormone concentrations for each individual. The goal is to estimate pulsatile hormone secretion features such as frequency, location, duration, and amount of pulsatile and non-pulsatile secretion and compare these features between groups. Various statistical approaches to analyzing these data have been proposed, but validation has generally focused on one hormone. Thus, we lack a broad understanding of each method's performance. By using simulated data with features seen in reproductive and stress hormones, we investigated the performance of three recently developed statistical approaches for analyzing pulsatile hormone data and compared them to a frequently used deconvolution approach. We found that methods incorporating a changing baseline modeled both constant and changing baseline shapes well; however, the added model flexibility resulted in a slight increase in bias in other model parameters. When pulses were well defined and baseline constant, Bayesian approaches performed similar to the existing deconvolution method. The increase in computation time of Bayesian approaches offered improved estimation and more accurate quantification of estimation variation in situations where pulse locations were not clearly identifiable. Within the class of deconvolution models for fitting pulsatile hormone data, the Bayesian approach with a changing baseline offered adequate results over the widest range of data.

摘要

许多内分泌系统受脉冲激素调节 - 这些激素间歇性地以脉冲形式分泌,而不是随时间持续分泌。为了研究脉冲分泌,需要每隔几分钟抽取一次血液,持续一段时间。结果是每个个体的激素浓度时间序列。目标是估计脉冲激素分泌的特征,如频率、位置、持续时间以及脉冲和非脉冲分泌的量,并比较这些特征在组之间的差异。已经提出了各种用于分析这些数据的统计方法,但验证通常集中在一种激素上。因此,我们缺乏对每种方法性能的广泛理解。通过使用具有生殖和应激激素中可见特征的模拟数据,我们研究了三种最近开发的用于分析脉冲激素数据的统计方法的性能,并将其与常用的反卷积方法进行了比较。我们发现,结合了变化基线的方法很好地模拟了恒定和变化的基线形状;然而,额外的模型灵活性导致其他模型参数的偏差略有增加。当脉冲定义明确且基线恒定时,贝叶斯方法的表现与现有的反卷积方法相似。在不明确识别脉冲位置的情况下,贝叶斯方法的计算时间增加提供了改进的估计,并更准确地量化了估计变化。在拟合脉冲激素数据的反卷积模型中,具有变化基线的贝叶斯方法在最广泛的范围内提供了足够的结果。

相似文献

1
A comparison of methods for analyzing time series of pulsatile hormone data.
Stat Med. 2013 Nov 20;32(26):4624-38. doi: 10.1002/sim.5882. Epub 2013 Jun 21.
2
A Bayesian approach to modeling associations between pulsatile hormones.
Biometrics. 2009 Jun;65(2):650-9. doi: 10.1111/j.1541-0420.2008.01117.x.
3
Bayesian deconvolution analysis of pulsatile hormone concentration profiles.
Biometrics. 2003 Sep;59(3):650-60. doi: 10.1111/1541-0420.00075.
4
Bayesian analysis improves pulse secretion characterization in reproductive hormones.
Syst Biol Reprod Med. 2018 Feb;64(1):80-91. doi: 10.1080/19396368.2017.1411541. Epub 2017 Dec 29.
5
A population-based approach to analyzing pulses in time series of hormone data.
Stat Med. 2017 Jul 20;36(16):2576-2589. doi: 10.1002/sim.7292. Epub 2017 Apr 9.
6
Analysis of pulsatile hormone concentration profiles with nonconstant Basal concentration: a bayesian approach.
Biometrics. 2007 Dec;63(4):1207-17. doi: 10.1111/j.1541-0420.2007.00809.x.
7
WENDEC: a deconvolution program for processing hormone time-series.
Comput Methods Programs Biomed. 1995 Aug;47(3):237-52. doi: 10.1016/0169-2607(95)01684-l.
8
Using Cox cluster processes to model latent pulse location patterns in hormone concentration data.
Biostatistics. 2016 Apr;17(2):320-33. doi: 10.1093/biostatistics/kxv046. Epub 2015 Nov 9.
9
Detecting pulsatile hormone secretions using nonlinear mixed effects partial spline models.
Biometrics. 2006 Mar;62(1):230-8. doi: 10.1111/j.1541-0420.2005.00403.x.

引用本文的文献

1
Bayesian analysis improves pulse secretion characterization in reproductive hormones.
Syst Biol Reprod Med. 2018 Feb;64(1):80-91. doi: 10.1080/19396368.2017.1411541. Epub 2017 Dec 29.
2
A population-based approach to analyzing pulses in time series of hormone data.
Stat Med. 2017 Jul 20;36(16):2576-2589. doi: 10.1002/sim.7292. Epub 2017 Apr 9.

本文引用的文献

1
Interface between hypothalamic-pituitary-adrenal axis and brain-derived neurotrophic factor in depression.
Psychiatry Clin Neurosci. 2010 Oct;64(5):447-59. doi: 10.1111/j.1440-1819.2010.02135.x.
2
Origin of ultradian pulsatility in the hypothalamic-pituitary-adrenal axis.
Proc Biol Sci. 2010 Jun 7;277(1688):1627-33. doi: 10.1098/rspb.2009.2148. Epub 2010 Feb 3.
3
AutoDecon: a robust numerical method for the quantification of pulsatile events.
Methods Enzymol. 2009;454:367-404. doi: 10.1016/S0076-6879(08)03815-9.
4
Cortisol interferes with the estradiol-induced surge of luteinizing hormone in the ewe.
Biol Reprod. 2009 Mar;80(3):458-63. doi: 10.1095/biolreprod.108.074252. Epub 2008 Dec 3.
5
Analysis of pulsatile hormone concentration profiles with nonconstant Basal concentration: a bayesian approach.
Biometrics. 2007 Dec;63(4):1207-17. doi: 10.1111/j.1541-0420.2007.00809.x.
6
Modeling of hormone secretion-generating mechanisms with splines: a pseudo-likelihood approach.
Biometrics. 2007 Mar;63(1):201-8. doi: 10.1111/j.1541-0420.2006.00672.x.
7
Pulsatile luteinizing hormone amplitude and progesterone metabolite excretion are reduced in obese women.
J Clin Endocrinol Metab. 2007 Jul;92(7):2468-73. doi: 10.1210/jc.2006-2274. Epub 2007 Apr 17.
9
Cortisol pulsatility and its role in stress regulation and health.
Front Neuroendocrinol. 2004 Jul;25(2):69-76. doi: 10.1016/j.yfrne.2004.07.001.
10
Endogenous ACTH concentration-dependent drive of pulsatile cortisol secretion in the human.
Am J Physiol Endocrinol Metab. 2004 Oct;287(4):E652-61. doi: 10.1152/ajpendo.00167.2004. Epub 2004 Jun 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验