Yang Yu-Chieh, Liu Anna, Wang Yuedong
Department of Statistics, National Taichung Institute of Technology, Taichung, Taiwan.
Biometrics. 2006 Mar;62(1):230-8. doi: 10.1111/j.1541-0420.2005.00403.x.
Neuroendocrine ensembles communicate with their remote and proximal target cells via an intermittent pattern of chemical signaling. The identification of episodic releases of hormonal pulse signals constitutes a major emphasis of endocrine investigation. Estimating the number, temporal locations, secretion rate, and elimination rate from hormone concentration measurements is of critical importance in endocrinology. In this article, we propose a new flexible statistical method for pulse detection based on nonlinear mixed effects partial spline models. We model pulsatile secretions using biophysical models and investigate biological variation between pulses using random effects. Pooling information from different pulses provides more efficient and stable estimation for parameters of interest. We combine all nuisance parameters including a nonconstant basal secretion rate and biological variations into a baseline function that is modeled nonparametrically using smoothing splines. We develop model selection and parameter estimation methods for the general nonlinear mixed effects partial spline models and an R package for pulse detection and estimation. We evaluate performance and the benefit of shrinkage by simulations and apply our methods to data from a medical experiment.
神经内分泌集合通过间歇性化学信号模式与其远端和近端靶细胞进行通信。激素脉冲信号的间歇性释放的识别是内分泌研究的一个主要重点。从激素浓度测量中估计脉冲数量、时间位置、分泌率和消除率在内分泌学中至关重要。在本文中,我们提出了一种基于非线性混合效应部分样条模型的新的灵活统计方法用于脉冲检测。我们使用生物物理模型对脉动分泌进行建模,并使用随机效应研究脉冲之间的生物学变异。汇总来自不同脉冲的信息可为感兴趣的参数提供更有效和稳定的估计。我们将所有干扰参数(包括非恒定基础分泌率和生物学变异)组合成一个基线函数,该函数使用平滑样条进行非参数建模。我们为一般非线性混合效应部分样条模型开发了模型选择和参数估计方法以及一个用于脉冲检测和估计的R包。我们通过模拟评估性能和收缩的益处,并将我们的方法应用于医学实验数据。