Suppr超能文献

杂交蜂毒素细胞溶肽驱动的超小脂质纳米粒在体内阻断黑色素瘤生长。

Hybrid melittin cytolytic Peptide-driven ultrasmall lipid nanoparticles block melanoma growth in vivo.

机构信息

Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan 430074, China.

出版信息

ACS Nano. 2013 Jul 23;7(7):5791-800. doi: 10.1021/nn400683s. Epub 2013 Jun 26.

Abstract

The cytolytic peptide melittin is a potential anticancer candidate that may be able to overcome tumor drug resistance due to its lytic properties. However, in vivo applications of melittin are limited due to its main side effect, hemolysis, which is especially pronounced following intravenous administration. Here, we designed a hybrid cytolytic peptide, α-melittin, in which the N-terminus of melittin is linked to the C-terminus of an amphipathic α-helical peptide (α-peptide) via a GSG linker. The strong α-helical configuration allows α-melittin to interact with phospholipids and self-assemble into lipid nanoparticles, with a high efficiency for α-melittin encapsulation (>80%) and a strong ability to control the structure of the nanoparticle (~20 nm). This α-melittin-based lipid nanoparticle (α-melittin-NP) efficiently shields the positive charge of melittin (18.70 ± 0.90 mV) within the phospholipid monolayer, resulting in the generation of a neutral nanoparticle (2.45 ± 0.56 mV) with reduced cytotoxicity and a widened safe dosage range. Confocal imaging data confirmed that α-melittin peptides were efficiently released from the nanoparticles and were cytotoxic to the melanoma cells. Finally, α-melittin-NPs were administered to melanoma-bearing mice via intravenous injection. The growth of the melanoma cells was blocked by the α-melittin-NPs, with an 82.8% inhibition rate relative to the PBS-treated control group. No side effects of treatment were found in this study. Thus, the excellent properties of α-melittin-NP give it potential clinical applications in solid tumor therapeutics through intravenous administration.

摘要

细胞溶素蜂毒素是一种有潜力的抗癌候选药物,由于其溶细胞特性,可能能够克服肿瘤耐药性。然而,由于其主要副作用溶血,蜂毒素的体内应用受到限制,尤其是静脉给药后。在这里,我们设计了一种杂交细胞溶素 α-蜂毒素,其中蜂毒素的 N 端通过 GSG 接头与两亲性α-螺旋肽(α-肽)的 C 端连接。强α-螺旋构象允许 α-蜂毒素与磷脂相互作用并自组装成脂质纳米颗粒,具有高效的 α-蜂毒素包封(>80%)和强烈的控制纳米颗粒结构的能力(~20nm)。这种基于 α-蜂毒素的脂质纳米颗粒(α-蜂毒素-NP)有效地屏蔽了蜂毒素的正电荷(18.70±0.90mV)在磷脂单层内,导致生成具有降低细胞毒性和更宽安全剂量范围的中性纳米颗粒(2.45±0.56mV)。共聚焦成像数据证实,α-蜂毒素肽从纳米颗粒中有效释放,并对黑色素瘤细胞具有细胞毒性。最后,通过静脉注射将α-蜂毒素-NP 递送至荷瘤小鼠。α-蜂毒素-NP 抑制了黑色素瘤细胞的生长,与 PBS 处理的对照组相比,抑制率为 82.8%。在这项研究中没有发现治疗的副作用。因此,α-蜂毒素-NP 的优异性质使其有可能通过静脉注射用于实体瘤治疗的临床应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验