Inerbaev Talgat, Hoefelmeyer James D, Kilin Dmitri S
Gumilyov Eurasian National University Astana, Munaitpasov st. 5, 010008, Kazakhstan.
J Phys Chem C Nanomater Interfaces. 2013 May 16;117(19):9673-9692. doi: 10.1021/jp311076w.
We evaluate a theoretical model in which Ru is substituting for Ti at the (100) surface of anatase TiO. Charge transfer from the photo-excited TiO substrate to the catalytic site triggers the photo-catalytic event (such as water oxidation or reduction half-reaction). We perform computational modeling of the charge transfer dynamics on the interface of TiO nanorod and catalytic site. A slab of TiO represents a fragment of TiO nanorod in the anatase phase. Titanium to ruthenium replacement is performed in a way to match the symmetry of TiO substrate. One molecular layer of adsorbed water is taken into consideration to mimic the experimental conditions. It is found that these adsorbed water molecules saturate dangling surface bonds and drastically affect the electronic properties of systems investigated. The modeling is performed by reduced density matrix method in the basis of Kohn-Sham orbitals. A nano-catalyst modeled through replacement defect contributes energy levels near the bottom of the conduction band of TiO nano-structure. An exciton in the nano-rod is dissipating due to interaction with lattice vibrations, treated through non-adiabatic coupling. The electron relaxes to conduction band edge and then to the Ru cite with faster rate than hole relaxes to the Ru cite. These results are of the importance for an optimal design of nano-materials for photo-catalytic water splitting and solar energy harvesting.
我们评估了一个理论模型,其中钌(Ru)在锐钛矿型TiO₂的(100)表面替代钛(Ti)。从光激发的TiO₂底物到催化位点的电荷转移引发了光催化事件(如水氧化或还原半反应)。我们对TiO₂纳米棒与催化位点界面上的电荷转移动力学进行了计算建模。一块TiO₂代表锐钛矿相TiO₂纳米棒的一个片段。钛被钌替代的方式与TiO₂底物的对称性相匹配。考虑了一层吸附水来模拟实验条件。发现这些吸附的水分子使悬空的表面键饱和,并极大地影响所研究系统的电子性质。建模是在Kohn-Sham轨道的基础上通过约化密度矩阵方法进行的。通过替代缺陷建模的纳米催化剂在TiO₂纳米结构的导带底部附近贡献能级。纳米棒中的激子由于与晶格振动的相互作用而耗散,通过非绝热耦合处理。电子弛豫到导带边缘,然后以比空穴弛豫到Ru位点更快的速率弛豫到Ru位点。这些结果对于光催化水分解和太阳能收集的纳米材料的优化设计具有重要意义。