83 Tat Chee Ave, AC1-P6423, Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China.
Adv Healthc Mater. 2014 Feb;3(2):214-20. doi: 10.1002/adhm.201300082. Epub 2013 Jun 25.
Stem cell microenvironments are enriched by signals from a variety of components, which cooperate spatially and temporally to regulate cellular function. In vitro recapitulating such complexity in a well-controlled manner is elusive. Here, a platform for patterning multiple bio-active proteins on a single substrate is developed and optimized, and is used it to study the cooperative involvement of cell-matrix interaction and cell-cell signaling in regulating neural stem cell (NSC) function. An affinity-capturing-based multi-step microcontact printing is used to pattern, extracellular matrix proteins, and cell-cell signaling ligands, as intersecting lines on a nonadhesive background. Such design provides spatial segregation of signals from different extrinsic components, while allowing cell traffic between them during their proliferation and differentiation processes. Rat embryonic neural stem cells are cultured and characterized on the multicomponent substrates patterned with different combinations of fibronectin, N-cadherin, and Jagged1 proteins and allow to proliferate and differentiate over long term. It is found that local presentation of Notch signaling ligand (Jagged1) or cell adhesion molecule (N-cadherin) effectively modulate the balance between cell-cell and cell-matrix interaction, and significantly change the overall spatial remodeling of NSC differentiation. This platform provides an unambiguous approach to study the spatial and temporal cooperative involvement of different extrinsic components in regulating stem cell behavior. It is also readily expandable for inclusion of extra components and applicable to use with other types of cells, which provide a powerful tool for basic study of cell-material interaction or advanced tissue-interface engineering.
干细胞微环境富含来自多种成分的信号,这些信号在空间和时间上协同调节细胞功能。在体外以可控的方式再现这种复杂性是困难的。在这里,开发并优化了一种在单个基底上对多种生物活性蛋白进行图案化的平台,并将其用于研究细胞-基质相互作用和细胞-细胞信号在调节神经干细胞 (NSC) 功能中的协同作用。基于亲和捕获的多步微接触印刷用于在非粘附背景上对细胞外基质蛋白和细胞-细胞信号配体进行图案化,形成相交的线。这种设计提供了来自不同外部分子的信号的空间分离,同时允许它们在增殖和分化过程中进行细胞间迁移。将大鼠胚胎神经干细胞培养在不同组合的纤连蛋白、N-钙粘蛋白和 Jagged1 蛋白图案化的多组分基底上进行培养和表征,并允许它们长期增殖和分化。结果发现,局部呈现 Notch 信号配体(Jagged1)或细胞黏附分子(N-钙粘蛋白)可有效调节细胞-细胞和细胞-基质相互作用之间的平衡,并显著改变 NSC 分化的整体空间重塑。该平台为研究不同外部分子在调节干细胞行为中的空间和时间协同作用提供了一种明确的方法。它也很容易扩展以包括额外的成分,并可应用于其他类型的细胞,为细胞-材料相互作用的基础研究或高级组织界面工程提供了强大的工具。