Suppr超能文献

二芳基乙烯基类化合物通过靶向 FadD32 抑制分枝菌酸生物合成并杀死结核分枝杆菌。

Diarylcoumarins inhibit mycolic acid biosynthesis and kill Mycobacterium tuberculosis by targeting FadD32.

机构信息

Infectious Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.

出版信息

Proc Natl Acad Sci U S A. 2013 Jul 9;110(28):11565-70. doi: 10.1073/pnas.1302114110. Epub 2013 Jun 24.

Abstract

Infection with the bacterial pathogen Mycobacterium tuberculosis imposes an enormous burden on global public health. New antibiotics are urgently needed to combat the global tuberculosis pandemic; however, the development of new small molecules is hindered by a lack of validated drug targets. Here, we describe the identification of a 4,6-diaryl-5,7-dimethyl coumarin series that kills M. tuberculosis by inhibiting fatty acid degradation protein D32 (FadD32), an enzyme that is required for biosynthesis of cell-wall mycolic acids. These substituted coumarin inhibitors directly inhibit the acyl-acyl carrier protein synthetase activity of FadD32. They effectively block bacterial replication both in vitro and in animal models of tuberculosis, validating FadD32 as a target for antibiotic development that works in the same pathway as the established antibiotic isoniazid. Targeting new steps in well-validated biosynthetic pathways in antitubercular therapy is a powerful strategy that removes much of the usual uncertainty surrounding new targets and in vivo clinical efficacy, while circumventing existing resistance to established targets.

摘要

细菌病原体结核分枝杆菌的感染给全球公共卫生带来了巨大负担。急需新的抗生素来对抗全球结核病流行;然而,新的小分子药物的开发受到缺乏经过验证的药物靶点的阻碍。在这里,我们描述了一种 4,6-二芳基-5,7-二甲基香豆素系列的鉴定,该系列通过抑制脂肪酸降解蛋白 D32(FadD32)杀死结核分枝杆菌,该酶是细胞壁类脂酸生物合成所必需的。这些取代的香豆素抑制剂直接抑制 FadD32 的酰基-酰基载体蛋白合成酶活性。它们在体外和结核动物模型中都有效地阻断细菌复制,验证了 FadD32 作为抗生素开发的靶点,其作用途径与已建立的抗生素异烟肼相同。针对抗结核治疗中经过充分验证的生物合成途径中的新步骤是一种强有力的策略,它消除了围绕新靶点和体内临床疗效的许多通常的不确定性,同时规避了对现有靶点的现有耐药性。

相似文献

10
Antibacterial drugs: hitting the tuberculosis wall.抗菌药物:攻克结核病难题
Nat Rev Drug Discov. 2013 Aug;12(8):578-9. doi: 10.1038/nrd4080.

引用本文的文献

6
Overcoming through small molecule inhibitors to break down cell wall synthesis.通过小分子抑制剂克服以破坏细胞壁合成。
Acta Pharm Sin B. 2022 Aug;12(8):3201-3214. doi: 10.1016/j.apsb.2022.04.014. Epub 2022 Apr 27.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验