Suppr超能文献

利用点过程模型估算遥测数据中的动物资源选择。

Estimating animal resource selection from telemetry data using point process models.

机构信息

National Marine Mammal Laboratory, Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA, Seattle, WA, 98115, USA.

出版信息

J Anim Ecol. 2013 Nov;82(6):1155-64. doi: 10.1111/1365-2656.12087. Epub 2013 Jun 25.

Abstract
  1. Analyses of animal resource selection functions (RSF) using data collected from relocations of individuals via remote telemetry devices have become commonplace. Increasing technological advances, however, have produced statistical challenges in analysing such highly autocorrelated data. Weighted distribution methods have been proposed for analysing RSFs with telemetry data. However, they can be computationally challenging due to an intractable normalizing constant and cannot be aggregated (i.e. collapsed) over time to make space-only inference. 2. In this study, we take a conceptually different approach to modelling animal telemetry data for making RSF inference. We consider the telemetry data to be a realization of a space-time point process. Under the point process paradigm, the times of the relocations are also considered to be random rather than fixed. 3. We show the point process models we propose are a generalization of the weighted distribution telemetry models. By generalizing the weighted model, we can access several numerical techniques for evaluating point process likelihoods that make use of common statistical software. Thus, the analysis methods can be readily implemented by animal ecologists. 4. In addition to ease of computation, the point process models can be aggregated over time by marginalizing over the temporal component of the model. This allows a full range of models to be constructed for RSF analysis at the individual movement level up to the study area level. 5. To demonstrate the analysis of telemetry data with the point process approach, we analysed a data set of telemetry locations from northern fur seals (Callorhinus ursinus) in the Pribilof Islands, Alaska. Both a space-time and an aggregated space-only model were fitted. At the individual level, the space-time analysis showed little selection relative to the habitat covariates. However, at the study area level, the space-only model showed strong selection relative to the covariates.
摘要
  1. 利用通过远程遥测设备对个体进行迁移而收集的数据来分析动物资源选择函数(RSF)已经变得很普遍。然而,不断增加的技术进步给分析这种高度自相关数据带来了统计上的挑战。已经提出了加权分布方法来分析具有遥测数据的 RSF。但是,由于难以处理的归一化常数,它们在计算上可能具有挑战性,并且不能随时间聚合(即合并)以进行仅空间推断。2. 在这项研究中,我们采用了一种从概念上不同的方法来对动物遥测数据进行建模,以便进行 RSF 推断。我们将遥测数据视为时空点过程的实现。在点过程范例下,迁移的时间也被认为是随机的,而不是固定的。3. 我们表明,我们提出的点过程模型是加权分布遥测模型的推广。通过推广加权模型,我们可以访问几种用于评估点过程似然的数值技术,这些技术利用了常见的统计软件。因此,分析方法可以由动物生态学家轻松实现。4. 除了易于计算之外,点过程模型还可以通过对模型的时间分量进行边缘化来随时间聚合。这允许在个体运动水平到研究区域水平上构建完整的 RSF 分析模型。5. 为了演示使用点过程方法分析遥测数据,我们分析了阿拉斯加普里比洛夫群岛的北方海狗(Callorhinus ursinus)的遥测位置数据集。拟合了时空和聚合的仅空间模型。在个体水平上,时空分析与栖息地协变量相比几乎没有选择。但是,在研究区域水平上,仅空间模型与协变量相比表现出强烈的选择。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验