Suppr超能文献

基于动物追踪数据的局部栖息地选择与大规模吸引/回避分析:是否存在一种最佳方法?

Analysis of local habitat selection and large-scale attraction/avoidance based on animal tracking data: is there a single best method?

作者信息

Mercker Moritz, Schwemmer Philipp, Peschko Verena, Enners Leonie, Garthe Stefan

机构信息

Bionum GmbH - Consultants in Biostatistics, Hamburg, Finkenwerder Norderdeich 15 A, Hamburg, Germany.

Institute of Applied Mathematics (IAM) Heidelberg University, Im Neuenheimer Feld 205, Heidelberg, 69120, Germany.

出版信息

Mov Ecol. 2021 Apr 23;9(1):20. doi: 10.1186/s40462-021-00260-y.

Abstract

BACKGROUND

New wildlife telemetry and tracking technologies have become available in the last decade, leading to a large increase in the volume and resolution of animal tracking data. These technical developments have been accompanied by various statistical tools aimed at analysing the data obtained by these methods.

METHODS

We used simulated habitat and tracking data to compare some of the different statistical methods frequently used to infer local resource selection and large-scale attraction/avoidance from tracking data. Notably, we compared spatial logistic regression models (SLRMs), spatio-temporal point process models (ST-PPMs), step selection models (SSMs), and integrated step selection models (iSSMs) and their interplay with habitat and animal movement properties in terms of statistical hypothesis testing.

RESULTS

We demonstrated that only iSSMs and ST-PPMs showed nominal type I error rates in all studied cases, whereas SSMs may slightly and SLRMs may frequently and strongly exceed these levels. iSSMs appeared to have on average a more robust and higher statistical power than ST-PPMs.

CONCLUSIONS

Based on our results, we recommend the use of iSSMs to infer habitat selection or large-scale attraction/avoidance from animal tracking data. Further advantages over other approaches include short computation times, predictive capacity, and the possibility of deriving mechanistic movement models.

摘要

背景

在过去十年中,新型野生动物遥测和追踪技术已经出现,导致动物追踪数据的数量和分辨率大幅增加。这些技术发展伴随着各种旨在分析通过这些方法获得的数据的统计工具。

方法

我们使用模拟栖息地和追踪数据来比较一些常用于从追踪数据推断局部资源选择和大规模吸引/回避的不同统计方法。值得注意的是,我们比较了空间逻辑回归模型(SLRM)、时空点过程模型(ST-PPM)、步长选择模型(SSM)和综合步长选择模型(iSSM),以及它们在统计假设检验方面与栖息地和动物运动特性的相互作用。

结果

我们证明,在所有研究案例中,只有iSSM和ST-PPM显示出名义上的I型错误率,而SSM可能略有超出,SLRM可能经常且大幅超出这些水平。iSSM似乎平均比ST-PPM具有更强健和更高的统计功效。

结论

基于我们的结果,我们建议使用iSSM从动物追踪数据推断栖息地选择或大规模吸引/回避。相对于其他方法的进一步优势包括计算时间短、预测能力以及推导机械运动模型的可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b58b/8063450/533f0c9231a2/40462_2021_260_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验