School of Biological Sciences, University of Bristol, Bristol BS8 1UG, UK.
J R Soc Interface. 2013 Jun 26;10(86):20130419. doi: 10.1098/rsif.2013.0419. Print 2013 Sep 6.
We measured the air speeds of 31 bird species, for which we had body mass and wing measurements, migrating along the east coast of Sweden in autumn, using a Vectronix Vector 21 ornithodolite and a Gill WindSonic anemometer. We expected each species' average air speed to exceed its calculated minimum-power speed (Vmp), and to fall below its maximum-range speed (Vmr), but found some exceptions to both limits. To resolve these discrepancies, we first reduced the assumed induced power factor for all species from 1.2 to 0.9, attributing this to splayed and up-turned primary feathers, and then assigned body drag coefficients for different species down to 0.060 for small waders, and up to 0.12 for the mute swan, in the Reynolds number range 25 000-250 000. These results will be used to amend the default values in existing software that estimates fuel consumption in migration, energy heights on arrival and other aspects of flight performance, using classical aeronautical theory. The body drag coefficients are central to range calculations. Although they cannot be measured on dead bird bodies, they could be checked against wind tunnel measurements on living birds, using existing methods.
我们使用 Vectronix Vector 21 型鸟类定向仪和 Gill WindSonic 风速计,测量了 31 种迁徙鸟类在瑞典东海岸的空气速度,这些鸟类的体重和翼展数据可供参考。我们预计每个物种的平均飞行速度将超过其计算的最小功率速度(Vmp),并低于其最大航程速度(Vmr),但我们发现这两个极限都存在一些例外。为了解决这些差异,我们首先将所有物种的假设诱导功率系数从 1.2 降低到 0.9,这归因于展开和向上翻转的主翼羽,然后将不同物种的身体阻力系数分配为小涉禽的 0.060 到默恩天鹅的 0.12,在雷诺数范围为 25000-250000 之间。这些结果将用于修正现有软件中的默认值,该软件使用经典航空理论估算迁徙中的燃料消耗、到达时的能量高度和其他飞行性能方面的内容。身体阻力系数是航程计算的核心。尽管无法在死鸟身上测量这些系数,但可以使用现有的方法,在活体鸟类的风洞中进行测量,以对其进行检验。