Hsu Yung-Fong, Chin Ching-Lan
Department of Psychology, National Taiwan University, Taipei, Taiwan.
Br J Math Stat Psychol. 2014 May;67(2):266-83. doi: 10.1111/bmsp.12018. Epub 2013 Jul 1.
The family of (non-parametric, fixed-step-size) adaptive methods, also known as 'up-down' or 'staircase' methods, has been used extensively in psychophysical studies for threshold estimation. Extensions of adaptive methods to non-binary responses have also been proposed. An example is the three-category weighted up-down (WUD) method (Kaernbach, 2001) and its four-category extension (Klein, 2001). Such an extension, however, is somewhat restricted, and in this paper we discuss its limitations. To facilitate the discussion, we characterize the extension of WUD by an algorithm that incorporates response confidence into a family of adaptive methods. This algorithm can also be applied to two other adaptive methods, namely Derman's up-down method and the biased-coin design, which are suitable for estimating any threshold quantiles. We then discuss via simulations of the above three methods the limitations of the algorithm. To illustrate, we conduct a small scale of experiment using the extended WUD under different response confidence formats to evaluate the consistency of threshold estimation.
(非参数、固定步长)自适应方法族,也被称为“上下”或“阶梯”方法,已在心理物理学研究中广泛用于阈值估计。也有人提出将自适应方法扩展到非二元响应。一个例子是三类加权上下(WUD)方法(凯尔恩巴赫,2001年)及其四类扩展(克莱因,2001年)。然而,这种扩展有一定的局限性,在本文中我们将讨论其局限性。为便于讨论,我们通过一种将响应置信度纳入自适应方法族的算法来描述WUD的扩展。该算法也可应用于另外两种自适应方法,即德曼的上下方法和偏硬币设计,它们适用于估计任何阈值分位数。然后,我们通过对上述三种方法的模拟来讨论该算法的局限性。为了说明这一点,我们使用扩展的WUD在不同的响应置信度格式下进行了小规模实验,以评估阈值估计的一致性。