Laboratory Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina, Barnwell College Building, 1512 Pendleton Street, Columbia, SC 29208, USA.
Exp Neurol. 2013 Oct;248:228-35. doi: 10.1016/j.expneurol.2013.06.020. Epub 2013 Jun 26.
HIV-1 enters the central nervous system early in infection; although HIV-1 does not directly infect neurons, HIV-1 may cause a variety of neurological disorders. Neuronal loss has been found in HIV-1, but synaptodendritic injury is more closely associated with the neurocognitive disorders of HIV-1. The HIV-1 transactivator of transcription (Tat) protein causes direct and indirect damage to neurons. The cysteine rich domain (residues 22-37) of Tat is important for producing neuronal death; however, little is known about the effects of the Tat protein functional domains on the dendritic network. The ability of HIV-1 Tat 1-101 Clades B and C, Tat 1-86 and Tat 1-72 proteins, as well as novel peptides (truncated 47-57, 1-72δ31-61, and 1-86 with a mutation at Cys22) to produce early synaptodendritic injury (24h), relative to later cell death (48h), was examined using cell culture. Treatment of primary hippocampal neurons with Tat proteins 1-72, 1-86 and 1-101B produced a significant early reduction in F-actin labeled puncta, implicating that these peptides play a role in synaptodendritic injury. Variants with a mutation, deletion, or lack of a cysteine rich region (1-86[Cys22], 1-101C, 1-72δ31-61, or 47-57) did not cause a significant reduction in F-actin rich puncta. Tat 1-72, 1-86, and 1-101B proteins did not significantly differ from one another, indicating that the second exon (73-86 or 73-101) does not play a significant role in the reduction of F-actin puncta. Conversely, peptides with a mutation, deletion, or lack of the cysteine rich domain (22-37) failed to produce a loss of F-actin puncta, indicating that the cysteine rich domain plays a key role in synaptodendritic injury. Collectively, these results suggest that for Tat proteins, 1) synaptodendritic injury occurs early, relative to cell death, and 2) the cysteine rich domain of the first exon is key for synaptic loss. Preventing such early synaptic loss may attenuate HIV-1 associated neurocognitive disorders.
HIV-1 在感染早期就进入中枢神经系统;尽管 HIV-1 不会直接感染神经元,但它可能导致各种神经紊乱。已经在 HIV-1 中发现了神经元损失,但突触树突损伤与 HIV-1 的神经认知障碍更为密切相关。HIV-1 转录激活蛋白(Tat)蛋白直接和间接损害神经元。Tat 的富含半胱氨酸结构域(残基 22-37)对产生神经元死亡很重要;然而,人们对 Tat 蛋白功能域对树突网络的影响知之甚少。使用细胞培养研究了 HIV-1 Tat 1-101 分支 B 和 C、Tat 1-86 和 Tat 1-72 蛋白以及新型肽(截断的 47-57、1-72δ31-61 和 1-86 中的 Cys22 突变)产生早期突触树突损伤(24 小时)相对于晚期细胞死亡(48 小时)的能力。用 Tat 蛋白 1-72、1-86 和 1-101B 处理原代海马神经元会导致 F-肌动蛋白标记的斑点早期显著减少,表明这些肽在突触树突损伤中发挥作用。具有突变、缺失或缺乏富含半胱氨酸区域(1-86[Cys22]、1-101C、1-72δ31-61 或 47-57)的变体不会导致 F-肌动蛋白丰富斑点的显著减少。Tat 1-72、1-86 和 1-101B 蛋白彼此之间没有显着差异,表明第二外显子(73-86 或 73-101)在减少 F-肌动蛋白斑点方面没有发挥重要作用。相反,具有突变、缺失或缺乏富含半胱氨酸结构域(22-37)的肽未能产生 F-肌动蛋白斑点的丧失,表明富含半胱氨酸的结构域在突触树突损伤中起关键作用。总的来说,这些结果表明,对于 Tat 蛋白,1)突触树突损伤发生得更早,相对于细胞死亡,2)第一外显子的富含半胱氨酸结构域是突触丧失的关键。预防这种早期的突触丢失可能会减轻 HIV-1 相关的神经认知障碍。
ASN Neuro. 2012-6-20
Extracell Vesicles Circ Nucl Acids. 2022
Eur J Clin Microbiol Infect Dis. 2023-10
Front Cell Infect Microbiol. 2022
J Neurovirol. 2021-6
Adv Virol. 2012
J Neurophysiol. 2012-3-28
Top Antivir Med. 2011-11
Traffic. 2011-10-11
BMC Neurosci. 2011-5-10
Prog Neurobiol. 2011-4-22