Suppr超能文献

建立简单的植物乳杆菌细胞共生体以实现纤维素酶-木聚糖酶的协同作用。

Establishment of a simple Lactobacillus plantarum cell consortium for cellulase-xylanase synergistic interactions.

机构信息

Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel.

出版信息

Appl Environ Microbiol. 2013 Sep;79(17):5242-9. doi: 10.1128/AEM.01211-13. Epub 2013 Jun 28.

Abstract

Lactobacillus plantarum is an attractive candidate for bioprocessing of lignocellulosic biomass due to its high metabolic variability, including its ability to ferment both pentoses and hexoses, as well as its high acid tolerance, a quality often utilized in industrial processes. This bacterium grows naturally on biomass; however, it lacks the inherent ability to deconstruct lignocellulosic substrates. As a first step toward engineering lignocellulose-converting lactobacilli, we have introduced genes coding for a GH6 cellulase and a GH11 xylanase from a highly active cellulolytic bacterium into L. plantarum. For this purpose, we employed the recently developed pSIP vectors for efficient secretion of heterologous proteins. Both enzymes were secreted by L. plantarum at levels estimated at 0.33 nM and 3.3 nM, for the cellulase and xylanase, respectively, in culture at an optical density at 600 nm (OD600) of 1. Transformed cells demonstrated the ability to degrade individually either cellulose or xylan and wheat straw. When mixed together to form a two-strain cell-based consortium secreting both cellulase and xylanase, they exhibited synergistic activity in the overall release of soluble sugar from wheat straw. This result paves the way toward metabolic harnessing of L. plantarum for novel biorefining applications, such as production of ethanol and polylactic acid directly from plant biomass.

摘要

植物乳杆菌因其高度的代谢多样性而成为木质纤维素生物加工的有吸引力的候选者,包括其能够发酵戊糖和己糖的能力,以及其耐酸能力,这一特性通常在工业过程中得到利用。这种细菌自然生长在生物质上;然而,它缺乏分解木质纤维素底物的固有能力。作为工程木质纤维素转化乳杆菌的第一步,我们已经将来自高度活跃的纤维素分解菌的 GH6 纤维素酶和 GH11 木聚糖酶的基因引入到植物乳杆菌中。为此,我们采用了最近开发的 pSIP 载体,用于高效分泌异源蛋白。在 OD600 为 1 的培养物中,这两种酶分别以估计为 0.33 nM 和 3.3 nM 的水平分泌,纤维素酶和木聚糖酶的水平分别为 0.33 nM 和 3.3 nM。转化细胞表现出单独降解纤维素或木聚糖和小麦秸秆的能力。当混合在一起形成分泌纤维素酶和木聚糖酶的两菌株基于细胞的联合体时,它们在从小麦秸秆中整体释放可溶性糖方面表现出协同活性。这一结果为利用植物乳杆菌进行新型生物精炼应用铺平了道路,例如直接从植物生物质生产乙醇和聚乳酸。

相似文献

1
Establishment of a simple Lactobacillus plantarum cell consortium for cellulase-xylanase synergistic interactions.
Appl Environ Microbiol. 2013 Sep;79(17):5242-9. doi: 10.1128/AEM.01211-13. Epub 2013 Jun 28.
2
A combined cell-consortium approach for lignocellulose degradation by specialized Lactobacillus plantarum cells.
Biotechnol Biofuels. 2014 Jul 24;7:112. doi: 10.1186/1754-6834-7-112. eCollection 2014.
3
Deconstruction of lignocellulose into soluble sugars by native and designer cellulosomes.
mBio. 2012 Dec 11;3(6):e00508-12. doi: 10.1128/mBio.00508-12.
7
Transcription Factor Atf1 Regulates Expression of Cellulase and Xylanase Genes during Solid-State Fermentation of Ascomycetes.
Appl Environ Microbiol. 2019 Nov 27;85(24). doi: 10.1128/AEM.01226-19. Print 2019 Dec 15.
8
Cell-surface display of designer cellulosomes by Lactobacillus plantarum.
Methods Enzymol. 2019;617:241-263. doi: 10.1016/bs.mie.2018.12.011. Epub 2019 Jan 25.
9
Synergistic effect of cellulase and xylanase during hydrolysis of natural lignocellulosic substrates.
Bioresour Technol. 2016 Nov;219:710-715. doi: 10.1016/j.biortech.2016.08.035. Epub 2016 Aug 12.
10
Cellulases and beyond: the first 70 years of the enzyme producer Trichoderma reesei.
Microb Cell Fact. 2016 Jun 10;15(1):106. doi: 10.1186/s12934-016-0507-6.

引用本文的文献

2
Cloning, expression, and characterization of a recombinant xylanase from Bacillus sonorensis T6.
PLoS One. 2022 Mar 17;17(3):e0265647. doi: 10.1371/journal.pone.0265647. eCollection 2022.
4
Release of health-related compounds during in vitro gastro-intestinal digestion of okara and okara fermented with .
J Food Sci Technol. 2020 Mar;57(3):1061-1070. doi: 10.1007/s13197-019-04140-7. Epub 2019 Nov 1.
5
Safety Aspects of Genetically Modified Lactic Acid Bacteria.
Microorganisms. 2020 Feb 21;8(2):297. doi: 10.3390/microorganisms8020297.
6
Constructing a yeast to express the largest cellulosome complex on the cell surface.
Proc Natl Acad Sci U S A. 2020 Feb 4;117(5):2385-2394. doi: 10.1073/pnas.1916529117. Epub 2020 Jan 17.
7
Comparative genome analysis of , an understudied member of the group.
Microb Genom. 2019 Sep;5(9). doi: 10.1099/mgen.0.000286. Epub 2019 Aug 1.
8
Genomics of Lactic Acid Bacteria for Glycerol Dissimilation.
Mol Biotechnol. 2019 Aug;61(8):562-578. doi: 10.1007/s12033-019-00186-2.
9
Lactic Acid Fermentation of Arabinoxylan From by ssp. 25124 Isolated From Pozol.
Front Microbiol. 2018 Dec 18;9:3061. doi: 10.3389/fmicb.2018.03061. eCollection 2018.

本文引用的文献

2
Deconstruction of lignocellulose into soluble sugars by native and designer cellulosomes.
mBio. 2012 Dec 11;3(6):e00508-12. doi: 10.1128/mBio.00508-12.
3
Cellulosic ethanol production by combination of cellulase-displaying yeast cells.
Enzyme Microb Technol. 2012 Dec 10;51(6-7):366-72. doi: 10.1016/j.enzmictec.2012.08.005. Epub 2012 Aug 23.
4
Recombinant production of hyperthermostable CelB from Pyrococcus furiosus in Lactobacillus sp.
Appl Microbiol Biotechnol. 2012 Nov;96(4):903-12. doi: 10.1007/s00253-012-4212-z. Epub 2012 Jun 20.
6
Alternative antimicrobial compounds to control potential Lactobacillus contamination in bioethanol fermentations.
J Environ Sci Health B. 2011;46(8):709-14. doi: 10.1080/03601234.2011.594411.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验