Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel.
mBio. 2012 Dec 11;3(6):e00508-12. doi: 10.1128/mBio.00508-12.
Lignocellulosic biomass, the most abundant polymer on Earth, is typically composed of three major constituents: cellulose, hemicellulose, and lignin. The crystallinity of cellulose, hydrophobicity of lignin, and encapsulation of cellulose by the lignin-hemicellulose matrix are three major factors that contribute to the observed recalcitrance of lignocellulose. By means of designer cellulosome technology, we can overcome the recalcitrant properties of lignocellulosic substrates and thus increase the level of native enzymatic degradation. In this context, we have integrated six dockerin-bearing cellulases and xylanases from the highly cellulolytic bacterium, Thermobifida fusca, into a chimeric scaffoldin engineered to bear a cellulose-binding module and the appropriate matching cohesin modules. The resultant hexavalent designer cellulosome represents the most elaborate artificial enzyme composite yet constructed, and the fully functional complex achieved enhanced levels (up to 1.6-fold) of degradation of untreated wheat straw compared to those of the wild-type free enzymes. The action of these designer cellulosomes on wheat straw was 33 to 42% as efficient as the natural cellulosomes of Clostridium thermocellum. In contrast, the reduction of substrate complexity by chemical or biological pretreatment of the substrate removed the advantage of the designer cellulosomes, as the free enzymes displayed higher levels of activity, indicating that enzyme proximity between these selected enzymes was less significant on pretreated substrates. Pretreatment of the substrate caused an increase in activity for all the systems, and the native cellulosome completely converted the substrate into soluble saccharides. IMPORTANCE Cellulosic biomass is a potential alternative resource which could satisfy future demands of transportation fuel. However, overcoming the natural lignocellulose recalcitrance remains challenging. Current research and development efforts have concentrated on the efficient cellulose-degrading strategies of cellulosome-producing anaerobic bacteria. Cellulosomes are multienzyme complexes capable of converting the plant cell wall polysaccharides into soluble sugar products en route to biofuels as an alternative to fossil fuels. Using a designer cellulosome approach, we have constructed the largest form of homogeneous artificial cellulosomes reported to date, which bear a total of six different cellulases and xylanases from the highly cellulolytic bacterium Thermobifida fusca. These designer cellulosomes were comparable in size to natural cellulosomes and displayed enhanced synergistic activities compared to their free wild-type enzyme counterparts. Future efforts should be invested to improve these processes to approach or surpass the efficiency of natural cellulosomes for cost-effective production of biofuels.
木质纤维素生物质是地球上最丰富的聚合物,通常由三种主要成分组成:纤维素、半纤维素和木质素。纤维素的结晶度、木质素的疏水性以及纤维素被木质素-半纤维素基质包裹,这三个因素导致木质纤维素的降解具有明显的抗性。通过设计细胞表面展示技术,我们可以克服木质纤维素底物的抗性,从而提高天然酶的降解水平。在这种情况下,我们将来自高度纤维素分解的嗜热纤维梭菌的六个含有 dockerin 的纤维素酶和木聚糖酶整合到一个经过工程改造的嵌合体支架中,该支架带有纤维素结合模块和适当的匹配粘着模块。由此产生的六价设计细胞表面展示酶复合物是迄今为止构建的最精细的人工酶复合物,与野生型游离酶相比,完全功能的复合物可提高未处理的小麦秸秆的降解水平(高达 1.6 倍)。这些设计细胞表面展示酶复合物对小麦秸秆的作用效率与热纤维梭菌的天然细胞表面展示酶复合物相当,为 33%至 42%。相比之下,通过对底物进行化学或生物预处理来降低底物的复杂性,会消除设计细胞表面展示酶复合物的优势,因为游离酶显示出更高的活性,这表明在预处理的底物上,这些选择的酶之间的酶接近程度不那么重要。预处理底物会增加所有系统的活性,而天然细胞表面展示酶复合物会将底物完全转化为可溶性糖。重要性木质纤维素生物质是一种潜在的替代资源,可以满足未来运输燃料的需求。然而,克服天然木质纤维素的抗性仍然具有挑战性。目前的研究和开发工作集中在产细胞表面展示酶的厌氧细菌的高效纤维素降解策略上。细胞表面展示酶复合物是多酶复合物,能够将植物细胞壁多糖转化为可溶性糖产物,作为化石燃料的替代品,用于生物燃料。通过设计细胞表面展示酶复合物的方法,我们构建了迄今为止报道的最大形式的均质人工细胞表面展示酶复合物,其中包含来自高度纤维素分解的嗜热纤维梭菌的六种不同的纤维素酶和木聚糖酶。这些设计细胞表面展示酶复合物的大小与天然细胞表面展示酶复合物相当,与游离野生型酶相比,显示出增强的协同活性。未来的工作应该致力于改进这些工艺,以提高或超过天然细胞表面展示酶复合物的效率,以实现生物燃料的成本效益生产。