Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G1X8, Canada.
J Biol Chem. 2013 Aug 9;288(32):23090-104. doi: 10.1074/jbc.M113.457606. Epub 2013 Jun 27.
It is commonly assumed that all phagosomes have identical molecular composition. This assumption has remained largely unchallenged due to a paucity of methods to distinguish individual phagosomes. We devised an assay that extends the utility of nitro blue tetrazolium for detection and quantification of NAPDH oxidase (NOX) activity in individual phagosomes. Implementation of this assay revealed that in murine macrophages there is heterogeneity in the ability of individual phagosomes to generate superoxide, both between and within cells. To elucidate the molecular basis of the variability in NOX activation, we employed genetically encoded fluorescent biosensors to evaluate the uniformity in the distribution of phospholipid mediators of the oxidative response. Despite variability in superoxide generation, the distribution of phosphatidylinositol 3,4,5-trisphosphate, phosphatidylinositol 3-phosphate, and phosphatidic acid was nearly identical in all phagosomes. In contrast, diacylglycerol (DAG) was not generated uniformly across the phagosomal population, varying in a manner that directly mirrored superoxide production. Modulation of DAG levels suggested that NOX activation is precluded when phagosomes fail to reach a critical DAG concentration. In particular, forced expression of diacylglycerol kinase β abrogated DAG accumulation at the phagosome, leading to impaired respiratory burst. Conversely, pharmacological inhibition of DAG kinases or expression of an inactive diacylglycerol kinase β mutant increased the proportion of DAG-positive phagosomes, concomitantly potentiating phagosomal NOX activity. Our data suggest that diacylglycerol kinases limit the extent of NADPH oxidase activation, curtailing the production of potentially harmful reactive oxygen species. The resulting heterogeneity in phagosome responsiveness could enable the survival of a fraction of invading microorganisms.
人们通常认为所有吞噬体具有相同的分子组成。由于缺乏区分单个吞噬体的方法,这种假设在很大程度上没有受到挑战。我们设计了一种测定法,该方法扩展了硝基蓝四唑在检测和定量单个吞噬体中 NADPH 氧化酶(NOX)活性中的应用。该测定法的实施表明,在鼠巨噬细胞中,单个吞噬体生成超氧化物的能力存在异质性,无论是在细胞之间还是在细胞内。为了阐明 NOX 激活变异性的分子基础,我们使用遗传编码的荧光生物传感器来评估氧化反应的磷脂介质分布的均匀性。尽管超氧化物的生成存在变异性,但所有吞噬体中磷脂酰肌醇 3,4,5-三磷酸、磷脂酰肌醇 3-磷酸和磷脂酸的分布几乎相同。相比之下,二酰基甘油(DAG)在吞噬体群体中没有均匀产生,其变化方式与超氧化物的产生直接对应。DAG 水平的调节表明,当吞噬体未能达到临界 DAG 浓度时,NOX 激活被排除在外。具体而言,强迫表达二酰基甘油激酶β会使吞噬体中 DAG 积累受阻,从而导致呼吸爆发受损。相反,DAG 激酶的药理学抑制或表达无活性的二酰基甘油激酶β突变体增加了 DAG 阳性吞噬体的比例,同时增强了吞噬体 NOX 活性。我们的数据表明,二酰基甘油激酶限制 NADPH 氧化酶激活的程度,从而限制潜在有害活性氧物质的产生。吞噬体反应性的这种异质性可以使一部分入侵微生物得以存活。