Suppr超能文献

铜-锂、锂-锡和铜-锂-锡的量热研究。

Calorimetric studies of Cu-Li, Li-Sn, and Cu-Li-Sn.

作者信息

Fürtauer S, Tserenjav E, Yakymovych A, Flandorfer H

机构信息

Department of Inorganic Chemistry/Materials Chemistry, University of Vienna, Währingerstraße 42, 1090 Vienna, Austria.

出版信息

J Chem Thermodyn. 2013 Jun;61(100):105-116. doi: 10.1016/j.jct.2013.01.030.

Abstract

Integral molar enthalpies of mixing were determined by drop calorimetry for Cu-Li-Sn at 1073 K along five sections / ≈ 1:1, / ≈ 2:3, / ≈ 1:4, / ≈ 1:1, and / ≈ 1:4. The integral and partial molar mixing enthalpies of Cu-Li and Li-Sn were measured at the same temperature, for Li-Sn in addition at 773 K. All binary data could be described by Redlich-Kister-polynomials. Cu-Li shows an endothermic mixing effect with a maximum in the integral molar mixing enthalpy of ∼5300 J · mol at  = 0.5, Li-Sn an exothermic minimum of ∼ -37,000 J · mol at  ∼ 0.2. For Li-Sn no significant temperature dependence between 773 K and 1073 K could be deduced. Our measured ternary data were fitted on the basis of an extended Redlich-Kister-Muggianu model for substitutional solutions. Additionally, a comparison of these results to the extrapolation model of Chou is given.

摘要

通过滴定量热法测定了1073 K下Cu-Li-Sn沿五个截面/≈1:1、/≈2:3、/≈1:4、/≈1:1和/≈1:4的混合积分摩尔焓。在相同温度下测量了Cu-Li和Li-Sn的积分和偏摩尔混合焓,对于Li-Sn还在773 K下进行了测量。所有二元数据都可用Redlich-Kister多项式描述。Cu-Li显示出吸热混合效应,在x = 0.5时积分摩尔混合焓最大约为5300 J·mol,Li-Sn在x ∼ 0.2时显示出放热最小值约为 -37000 J·mol。对于Li-Sn,在773 K和1073 K之间未推断出明显的温度依赖性。我们测量的三元数据基于扩展的Redlich-Kister-Muggianu替代溶液模型进行拟合。此外,还将这些结果与Chou的外推模型进行了比较。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cb2/3693048/eafc0e132003/gr1.jpg

相似文献

1
Calorimetric studies of Cu-Li, Li-Sn, and Cu-Li-Sn.
J Chem Thermodyn. 2013 Jun;61(100):105-116. doi: 10.1016/j.jct.2013.01.030.
2
Enthalpy of mixing of liquid systems for lead free soldering: Ni-Sb-Sn system.
Thermochim Acta. 2012 Apr 20;534-178(4):33-40. doi: 10.1016/j.tca.2012.01.024.
3
The Enthalpies of Mixing of Liquid Ni-Sn-Zn Alloys.
J Phase Equilibria Diffus. 2014;35(4):359-368. doi: 10.1007/s11669-014-0288-8. Epub 2014 Feb 22.
4
Enthalpies of mixing of liquid systems for lead free soldering: Co-Sb-Sn.
Intermetallics (Barking). 2012 Apr;23(2-2):128-133. doi: 10.1016/j.intermet.2011.12.023.
5
Enthalpies of mixing of liquid ternary Co-Li-Sn alloys.
Monatsh Chem. 2014;145(11):1697-1706. doi: 10.1007/s00706-014-1284-8. Epub 2014 Sep 24.
6
Enthalpies of mixing of liquid systems for lead free soldering: Al-Cu-Sn system.
J Chem Thermodyn. 2011 Nov;43(11):1612-1622. doi: 10.1016/j.jct.2011.05.021.
7
Enthalpy of mixing of liquid Co-Sn alloys.
J Chem Thermodyn. 2014 Jul;74(100):269-285. doi: 10.1016/j.jct.2014.02.013.
8
Mixing Enthalpies of Liquid Ag-Mg-Pb Alloys: Experiment vs. Thermodynamic Modeling.
Materials (Basel). 2022 Oct 20;15(20):7360. doi: 10.3390/ma15207360.
9
Thermodynamic properties of liquid Au-Cu-Sn alloys determined from electromotive force measurements.
Thermochim Acta. 2011 Oct 20;525(1-2):183-189. doi: 10.1016/j.tca.2011.08.011.

引用本文的文献

1
The Cu-Li-Sn Phase Diagram: Isopleths, Liquidus Projection and Reaction Scheme.
PLoS One. 2016 Oct 27;11(10):e0165058. doi: 10.1371/journal.pone.0165058. eCollection 2016.
2
Enthalpies of mixing of liquid ternary Co-Li-Sn alloys.
Monatsh Chem. 2014;145(11):1697-1706. doi: 10.1007/s00706-014-1284-8. Epub 2014 Sep 24.

本文引用的文献

1
The Cu-Sn phase diagram, Part I: New experimental results.
Intermetallics (Barking). 2013 Mar;34:142-147. doi: 10.1016/j.intermet.2012.10.004.
2
Density functional calculation for Li2CuSn as an electrode material for rechargeable batteries.
J Phys Chem B. 2009 Oct 8;113(40):13208-15. doi: 10.1021/jp906641b.
3
X-ray and neutron diffraction studies on "Li4.4Sn".
Inorg Chem. 2003 Jun 16;42(12):3765-71. doi: 10.1021/ic026235o.
4
[Tertiary lithium bonding with elements of the 4th main group].
Naturwissenschaften. 1966 Jul;53(14):360-1. doi: 10.1007/BF00621873.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验